scholarly journals Perspectives on the Role of Non-Coding RNAs in the Regulation of Expression and Function of the Estrogen Receptor

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2162
Author(s):  
Mohammad Taheri ◽  
Hamed Shoorei ◽  
Marcel E. Dinger ◽  
Soudeh Ghafouri-Fard

Estrogen receptors (ERs) comprise several nuclear and membrane-bound receptors with different tissue-specific functions. ERα and ERβ are two nuclear members of this family, whereas G protein-coupled estrogen receptor (GPER), ER-X, and Gq-coupled membrane estrogen receptor (Gq-mER) are membrane-bound G protein-coupled proteins. ERα participates in the development and function of several body organs such as the reproductive system, brain, heart and musculoskeletal systems. ERβ has a highly tissue-specific expression pattern, particularly in the female reproductive system, and exerts tumor-suppressive roles in some tissues. Recent studies have revealed functional links between both nuclear and membrane-bound ERs and non-coding RNAs. Several oncogenic lncRNAs and miRNAs have been shown to exert their effects through the modulation of the expression of ERs. Moreover, treatment with estradiol has been shown to alter the malignant behavior of cancer cells through functional axes composed of non-coding RNAs and ERs. The interaction between ERs and non-coding RNAs has functional relevance in several human pathologies associated with estrogen regulation, such as cancers, intervertebral disc degeneration, coronary heart disease and diabetes. In the current review, we summarize scientific literature on the role of miRNAs and lncRNAs on ER-associated signaling and related disorders.

2017 ◽  
Vol 2 (1) ◽  
pp. 1-13 ◽  
Author(s):  
M. Carmen Rodenas ◽  
Nicola Tamassia ◽  
Isabel Cabas ◽  
Federica Calzetti ◽  
José Meseguer ◽  
...  

Background: The role of estrogens in immune functioning is relatively well known under both physiological and pathological conditions. Neutrophils are the most abundant circulating leukocytes in humans, and their abundance and function are regulated by estrogens, since they express estrogen receptors (ERs). Traditionally, estrogens were thought to act via classical nuclear ERs, namely ERα and ERβ. However, it was observed that some estrogens induced biological effects only minutes after their application. This rapid, “nongenomic” effect of estrogens is mediated by a membrane-anchored receptor called G protein-coupled estrogen receptor 1 (GPER1). Nevertheless, the expression and role of GPER1 in the immune system has not been exhaustively studied, and its relevance in neutrophil functions remains unknown. Methods: Human neutrophils were incubated in vitro with 10-100 µM of the GPER1-specific agonist G1 alone or in combination with lipopolysaccharide. GPER1 expression and subcellular localization, respiratory burst, life span, gene expression profile, and cell signaling pathways involved were then analyzed in stimulated neutrophils. Results: Human neutrophils express a functional GPER1 which regulates their functions through cAMP/protein kinase A/cAMP response element-binding protein, p38 mitogen-activated protein kinase, and extracellular regulated MAPK signaling pathways. Thus, GPER1 activation in vitro increases the respiratory burst of neutrophils, extends their life span, and drastically alters their gene expression profile. Conclusions: Our results demonstrate that GPER1 activation promotes the polarization of human neutrophils towards a proinflammatory phenotype and point to GPER1 as a potential therapeutic target in immune diseases where neutrophils play a key role.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sun-Hee Hwang ◽  
Bandarigoda N Somatilaka ◽  
Kevin White ◽  
Saikat Mukhopadhyay

The role of compartmentalized signaling in primary cilia during tissue morphogenesis is not well understood. The cilia-localized G-protein-coupled receptor—Gpr161 represses hedgehog pathway via cAMP signaling. We engineered a knock-in at Gpr161 locus in mice to generate a variant (Gpr161mut1), which was ciliary localization defective but cAMP signaling competent. Tissue phenotypes from hedgehog signaling depend on downstream bifunctional Gli transcriptional factors functioning as activators/repressors. Compared to knockout (ko), Gpr161mut1/ko had delayed embryonic lethality, moderately increased hedgehog targets and partially down-regulated Gli3-repressor. Unlike ko, the Gpr161mut1/ko neural tube did not show Gli2-activator-dependent expansion of ventral-most progenitors. Instead, the intermediate neural tube showed progenitor expansion that depends on loss of Gli3-repressor. Increased extraciliary receptor (Gpr161mut1/mut1) prevented ventralization. Morphogenesis in limb buds and midface requires Gli-repressor; these tissues in Gpr161mut1/mut1 manifested hedgehog hyperactivation phenotypes—polydactyly and midfacial widening. Thus, ciliary and extraciliary Gpr161 pools likely establish tissue-specific Gli-repressor thresholds in determining morpho-phenotypic outcomes.


2011 ◽  
Vol 50 (3) ◽  
pp. 267-277 ◽  
Author(s):  
Beata Jastrzebska ◽  
Aleksander Debinski ◽  
Slawomir Filipek ◽  
Krzysztof Palczewski

Hypertension ◽  
2019 ◽  
Vol 74 (Suppl_1) ◽  
Author(s):  
Benard O Ogola ◽  
Gabrielle L Clark ◽  
Caleb M Abshire ◽  
Nicholas R Harris ◽  
Kaylee L Gentry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document