scholarly journals The Diagnostic and Prognostic Value of a Liquid Biopsy for Esophageal Cancer: A Systematic Review and Meta-Analysis

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3070
Author(s):  
Daisuke Matsushita ◽  
Takaaki Arigami ◽  
Keishi Okubo ◽  
Ken Sasaki ◽  
Masahiro Noda ◽  
...  

Esophageal cancer is among the most aggressive diseases, and circulating tumor cells (CTCs) have been recognized as novel biomarkers for various cancers over the past two decades, including esophageal cancer. CTCs might provide crucial clinical information for predicting cancer prognosis, monitoring therapeutic responses or recurrences, or elucidating the mechanism of metastasis. The isolation of CTCs is among the applications of a “liquid biopsy”. There are various technologies for liquid biopsies, and they are classified into two main methods: cytometric or non-cytometric techniques. Here, we review a total of 57 eligible articles to summarize various technologies for the use of a liquid biopsy in esophageal cancer and perform a meta-analysis to assess the clinical utility of liquid biopsies as a prognostic and diagnostic biomarker technique. For prognostic evaluation, the pooled hazard ratio in the cytometric assay is relatively higher than that of the non-cytometric assay. On the other hand, a combination of multiple molecules, using a non-cytometric assay, might be a favorable biomarker technique for the early diagnosis of esophageal cancer. Although determining strong evidence for a biomarker by using a liquid biopsy is still challenging, our meta-analysis might be a milestone for the future development of liquid biopsies in use with esophageal cancer.

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Masayoshi Nagata ◽  
Satoru Muto ◽  
Shigeo Horie

Although many clinical and molecular markers for predicting outcomes in bladder cancer (BC) have been reported, their application in clinical practice remains unclear. Bladder carcinogenesis has two distinct molecular pathways that direct the development of BC.FGFR3mutations are common in low-grade BC, whileTP53mutation or loss ofRB1is associated with muscle-invasive BC. However, no tissue-based gene markers confirmed by prospective large-scale trials in BC have been used in clinical practice. Micro-RNA analyses of BC tissue revealed that miR-145 and miR-29c⁎function as tumor suppressors, whereas miR-183 and miR-17-5p function as oncogenic miRNAs. In liquid biopsy, circulating tumor cells (CTC), exosomes, or cell-free RNA is extracted from the peripheral blood samples of cancer patients to analyze cancer prognosis. It was reported that detection of CTC was associated with poor prognostic factors. However, application of liquid biopsy in BC treatment is yet to be explored. Although several cell-free RNAs, such as miR-497 in plasma or miR-214 in urine, could be promising novel circulating biomarkers, they are used only for diagnosing BC as the case that now stands. Here, we discuss the application of novel biomarkers in evaluating and measuring BC outcomes.


2015 ◽  
Vol 14 (2) ◽  
pp. 6578-6582 ◽  
Author(s):  
S.-W. Wen ◽  
Y.-F. Zhang ◽  
Y. Li ◽  
Z.-X. Liu ◽  
H.-L. Lv ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 500
Author(s):  
Sai Mummareddy ◽  
Stuti Pradhan ◽  
Ashwin Kumar Narasimhan ◽  
Arutselvan Natarajan

Recently, considerable interest has emerged in the development of biosensors to detect biomarkers and immune checkpoints to identify and measure cancer through liquid biopsies. The detection of cancer biomarkers from a small volume of blood is relatively fast compared to the gold standard of tissue biopsies. Traditional immuno-histochemistry (IHC) requires tissue samples obtained using invasive procedures and specific expertise as well as sophisticated instruments. Furthermore, the turnaround for IHC assays is usually several days. To overcome these challenges, on-demand biosensor-based assays were developed to provide more immediate prognostic information for clinicians. Novel rapid, highly precise, and sensitive approaches have been under investigation using physical and biochemical methods to sense biomarkers. Additionally, interest in understanding immune checkpoints has facilitated the rapid detection of cancer prognosis from liquid biopsies. Typically, these devices combine various classes of detectors with digital outputs for the measurement of soluble cancer or immune checkpoint (IC) markers from liquid biopsy samples. These sensor devices have two key advantages: (a) a small volume of blood drawn from the patient is sufficient for analysis, and (b) it could aid physicians in quickly selecting and deciding the appropriate therapy regime for the patients (e.g., immune checkpoint blockade (ICB) therapy). In this review, we will provide updates on potential cancer markers, various biosensors in cancer diagnosis, and the corresponding limits of detection, while focusing on biosensor development for IC marker detection.


Author(s):  
Swathikan Chidambaram ◽  
Sheraz R Markar

Summary Esophageal cancer is an aggressive malignancy with a relatively poor prognosis even after multimodality therapy. Currently, patients undergo a series of investigations that can be invasive and costly or pose secondary risks to their health. In other malignancies, liquid biopsies of circulating tumor DNA (ctDNA) are used in clinical practice for diagnostic and surveillance purposes. This systematic review summarizes the latest evidence for the clinical applicability of ctDNA technology in esophageal cancer. A systematic review of the literature was performed using MEDLINE, EMBASE, the Cochrane Review and Scopus databases. Articles were evaluated for the use of ctDNA for diagnosis and monitoring of patients with esophageal cancer. Quality assessment of studies was performed using the QUADAS-2 tool. A meta-analysis was performed to assess the diagnostic accuracy of sequencing methodologies. We included 15 studies that described the use of ctDNA technology in the qualitative synthesis and eight studies involving 414 patients in the quantitative analysis. Of these, four studies assessed its utility in cancer diagnosis, while four studies evaluated its use for prognosis and monitoring. The pooled sensitivity and specificity for diagnostic studies were 71.0% (55.7–82.6%) and 98.6% (33.9–99.9%), while the pooled sensitivity and specificity for surveillance purposes were 48.9% (29.4–68.8%) and 95.5% (90.6–97.9%). ctDNA technology is an acceptable method for diagnosis and monitoring with a moderate sensitivity and high specificity that is enhanced in combination with current imaging methods. Further work should demonstrate the practical integration of ctDNA in the diagnostic and surveillance clinical pathway.


2017 ◽  
Vol 48 (4) ◽  
pp. 242-245 ◽  
Author(s):  
Junhua Dang ◽  
Ying Liu ◽  
Xiaoping Liu ◽  
Lihua Mao

Abstract. The ego depletion effect has been examined by over 300 independent studies during the past two decades. Despite its pervasive influence, recently this effect has been severely challenged and asserted to be a fake. Based on an up-to-date meta-analysis that examined the effectiveness of each frequently used depleting task, we preregistered the current experiment with the aim to examine whether there would be an ego depletion effect when the Stroop task is used as the depleting task. The results demonstrated a significant ego depletion effect. The current research highlights the importance of the depleting task’s effectiveness. That is to say, the “ego” could be “depleted,” but only when initial exertion is “depleting.”


Author(s):  
Ying Lu ◽  
Jing Shao ◽  
Xu Shu ◽  
Yaofei Jiang ◽  
Jianfang Rong ◽  
...  

Aim and Objective: Fatty acid desaturase 1 (FADS1) has been reported to be a potential biomarker in various cancers. However, no study has explored the relationship between FADS1 expression and bladder cancer. Our study aimed to investigate the role of FADS1 in bladder cancer prognosis via The Cancer Genome Atlas (TCGA). Materials and Methods: RNA-Seq expression of 414 tumor tissues and 19 paired normal tissues, as well as corresponding clinical data, were downloaded from TCGA database. Two cancer cases were excluded due to a lack of clinical information. The association between FADS1 and the clinicopathological features of bladder cancer was analyzed. This study was conducted in October of 2019 in China. Results: The high expression of FADS1 in bladder cancer was significantly related to histological grade (OR = 0.155 for low vs. high), clinical stage (OR=2.074 for III or IV vs. I or II), T classification (OR=2.326 for T3 or T4 vs. T1 or T2), lymphatic metastasis (OR=1.923 for N1 or N2 or N3 vs. N0) and distant metastasis (OR=4.883 for yes vs. no) (all p-values <0.05). Bladder cancer with high FADS1 levels was related to a worse prognosis than bladder cancer with low FADS1 levels (p= 1.626*10-5 ), according to median expression value 3.622. FADS1 was an independent factor of overall survival in bladder cancer, with a hazard ratio of 1.048 (95%CI: 1.020–1.077, p = 0.001). Conclusions: Increased FADS1 expression in bladder cancer is associated with advanced clinical pathological features and may be a potential biomarker for poor prognosis.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2265
Author(s):  
Elio Gregory Pizzutilo ◽  
Martino Pedrani ◽  
Alessio Amatu ◽  
Lorenzo Ruggieri ◽  
Calogero Lauricella ◽  
...  

Background: The potential added value of liquid biopsy (LB) is not well determined in the case of small cell lung cancer (SCLC), an aggressive tumor that can occur either de novo or from the histologic transformation of non-small cell lung cancer (NSCLC). Methods: A systematic review of studies adopting LB in patients with SCLC have been performed to assess the clinical utility of circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs). Results: After a screening of 728 records, 62 studies (32 evaluating CTCs, 27 ctDNA, and 3 both) met predetermined eligibility criteria. Only four studies evaluated LB in the diagnostic setting for SCLC, while its prognostic significance was evaluated in 38 studies and prominently supported by both ctDNA and CTCs. A meta-analysis of 11 studies as for CTCs enumeration showed an HR for overall survival of 2.63 (1.71–4.05), with a potential publication bias. The feasibility of tumor genomic profiling and the predictive role of LB in terms of response/resistance to chemotherapy was assessed in 11 and 24 studies, respectively, with greater consistency for those regarding ctDNA. Intriguingly, several case reports suggest that LB can indirectly capture the transition to SCLC in NSCLC treated with EGFR tyrosine kinase inhibitors. Conclusions: While dedicated trials are needed, LB holds potential clinical roles in both de novo and transformed SCLC. CtDNA analysis appears the most valuable and practicable tool for both disease monitoring and genomic profiling.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3923
Author(s):  
Daniel Di Capua ◽  
Dara Bracken-Clarke ◽  
Karine Ronan ◽  
Anne-Marie Baird ◽  
Stephen Finn

Lung cancer is a leading cause of cancer-related deaths, contributing to 18.4% of cancer deaths globally. Treatment of non-small cell lung carcinoma has seen rapid progression with targeted therapies tailored to specific genetic drivers. However, identifying genetic alterations can be difficult due to lack of tissue, inaccessible tumors and the risk of complications for the patient with serial tissue sampling. The liquid biopsy provides a minimally invasive method which can obtain circulating biomarkers shed from the tumor and could be a safer alternative to tissue biopsy. While tissue biopsy remains the gold standard, liquid biopsies could be very beneficial where serial sampling is required, such as monitoring disease progression or development of resistance mutations to current targeted therapies. Liquid biopsies also have a potential role in identifying patients at risk of relapse post treatment and as a component of future lung cancer screening protocols. Rapid developments have led to multiple platforms for isolating circulating tumor cells (CTCs) and detecting circulating tumor DNA (ctDNA); however, standardization is lacking, especially in lung carcinoma. Additionally, clonal hematopoiesis of uncertain clinical significance must be taken into consideration in genetic sequencing, as it introduces the potential for false positives. Various biomarkers have been investigated in liquid biopsies; however, in this review, we will concentrate on the current use of ctDNA and CTCs, focusing on the clinical relevance, current and possible future applications and limitations of each.


Sign in / Sign up

Export Citation Format

Share Document