scholarly journals Phenotypic Characterization by Mass Cytometry of the Microenvironment in Ovarian Cancer and Impact of Tumor Dissociation Methods

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 755
Author(s):  
Shamundeeswari Anandan ◽  
Liv Cecilie V. Thomsen ◽  
Stein-Erik Gullaksen ◽  
Tamim Abdelaal ◽  
Katrin Kleinmanns ◽  
...  

Improved molecular dissection of the tumor microenvironment (TME) holds promise for treating high-grade serous ovarian cancer (HGSOC), a gynecological malignancy with high mortality. Reliable disease-related biomarkers are scarce, but single-cell mapping of the TME could identify patient-specific prognostic differences. To avoid technical variation effects, however, tissue dissociation effects on single cells must be considered. We present a novel Cytometry by Time-of-Flight antibody panel for single-cell suspensions to identify individual TME profiles of HGSOC patients and evaluate the effects of dissociation methods on results. The panel was developed utilizing cell lines, healthy donor blood, and stem cells and was applied to HGSOC tissues dissociated by six methods. Data were analyzed using Cytobank and X-shift and illustrated by t-distributed stochastic neighbor embedding plots, heatmaps, and stacked bar and error plots. The panel distinguishes the main cellular subsets and subpopulations, enabling characterization of individual TME profiles. The dissociation method affected some immune (n = 1), stromal (n = 2), and tumor (n = 3) subsets, while functional marker expressions remained comparable. In conclusion, the panel can identify subsets of the HGSOC TME and can be used for in-depth profiling. This panel represents a promising profiling tool for HGSOC when tissue handling is considered.

Author(s):  
Tania Velletri ◽  
Carlo Emanuele Villa ◽  
Domenica Cilli ◽  
Bianca Barzaghi ◽  
Pietro Lo Riso ◽  
...  

AbstractHigh Grade Serous Ovarian cancer (HGSOC) is a major unmet need in oncology, due to its precocious dissemination and the lack of meaningful human models for the investigation of disease pathogenesis in a patient-specific manner. To overcome this roadblock, we present a new method to isolate and grow single cells directly from patients’ metastatic ascites, establishing the conditions for propagating them as 3D cultures that we refer to as single cell-derived metastatic ovarian cancer spheroids (sMOCS). By single cell RNA sequencing (scRNAseq) we define the cellular composition of metastatic ascites and trace its propagation in 2D and 3D culture paradigms, finding that sMOCS retain and amplify key subpopulations from the original patients’ samples and recapitulate features of the original metastasis that do not emerge from classical 2D culture, including retention of individual patients’ specificities. By enabling the enrichment of uniquely informative cell subpopulations from HGSOC metastasis and the clonal interrogation of their diversity at the functional and molecular level, this method provides a powerful instrument for precision oncology in ovarian cancer.


2018 ◽  
Author(s):  
Tania Velletri ◽  
Emanuele Carlo Villa ◽  
Michela Lupia ◽  
Pietro Lo Riso ◽  
Raffaele Luongo ◽  
...  

AbstractHigh Grade Serous Ovarian cancer (HGSOC) is a major unmet need in oncology, due to its precocious dissemination and the lack of meaningful human models for the investigation of disease pathogenesis in a patient-specific manner. To overcome this roadblock, we present a new method to isolate and grow single cells directly from patients’ ascites, establishing the conditions for propagating them as single-cell derived ovarian cancer organoids (scOCOs). By single cell RNA sequencing (scRNAseq) we define the cellular composition of metastatic ascites and trace its propagation in 2D and 3D culture paradigms, finding that scOCOs retain and amplify key subpopulations from the original patients’ samples and recapitulate features of the original metastasis that do not emerge from classical 2D culture, including retention of individual patients’ specificities. By enabling the enrichment of uniquely informative cell subpopulations from HGSOC metastasis and the clonal interrogation of their diversity at the functional and molecular level, this method transforms the prospects of precision oncology for ovarian cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shengquan Chen ◽  
Guanao Yan ◽  
Wenyu Zhang ◽  
Jinzhao Li ◽  
Rui Jiang ◽  
...  

AbstractThe recent advancements in single-cell technologies, including single-cell chromatin accessibility sequencing (scCAS), have enabled profiling the epigenetic landscapes for thousands of individual cells. However, the characteristics of scCAS data, including high dimensionality, high degree of sparsity and high technical variation, make the computational analysis challenging. Reference-guided approaches, which utilize the information in existing datasets, may facilitate the analysis of scCAS data. Here, we present RA3 (Reference-guided Approach for the Analysis of single-cell chromatin Accessibility data), which utilizes the information in massive existing bulk chromatin accessibility and annotated scCAS data. RA3 simultaneously models (1) the shared biological variation among scCAS data and the reference data, and (2) the unique biological variation in scCAS data that identifies distinct subpopulations. We show that RA3 achieves superior performance when used on several scCAS datasets, and on references constructed using various approaches. Altogether, these analyses demonstrate the wide applicability of RA3 in analyzing scCAS data.


2020 ◽  
Author(s):  
Tobias Groß ◽  
Csaba Jeney ◽  
Darius Halm ◽  
Günter Finkenzeller ◽  
G. Björn Stark ◽  
...  

AbstractThe homogeneity of the genetically modified single-cells is a necessity for many applications such as cell line development, gene therapy, and tissue engineering and in particular for regenerative medical applications. The lack of tools to effectively isolate and characterize CRISPR/Cas9 engineered cells is considered as a significant bottleneck in these applications. Especially the incompatibility of protein detection technologies to confirm protein expression changes without a preconditional large-scale clonal expansion, creates a gridlock in many applications. To ameliorate the characterization of engineered cells, we propose an improved workflow, including single-cell printing/isolation technology based on fluorescent properties with high yield, a genomic edit screen (surveyor assay), mRNA rtPCR assessing altered gene expression and a versatile protein detection tool called emulsion-coupling to deliver a high-content, unified single-cell workflow. The workflow was exemplified by engineering and functionally validating RANKL knockout immortalized mesenchymal stem cells showing altered bone formation capacity of these cells. The resulting workflow is economical, without the requirement of large-scale clonal expansions of the cells with overall cloning efficiency above 30% of CRISPR/Cas9 edited cells. Nevertheless, as the single-cell clones are comprehensively characterized at an early, highly parallel phase of the development of cells including DNA, RNA, and protein levels, the workflow delivers a higher number of successfully edited cells for further characterization, lowering the chance of late failures in the development process.Author summaryI completed my undergraduate degree in biochemistry at the University of Ulm and finished my master's degree in pharmaceutical biotechnology at the University of Ulm and University of applied science of Biberach with a focus on biotechnology, toxicology and molecular biology. For my master thesis, I went to the University of Freiburg to the department of microsystems engineering, where I developed a novel workflow for cell line development. I stayed at the institute for my doctorate, but changed my scientific focus to the development of the emulsion coupling technology, which is a powerful tool for the quantitative and highly parallel measurement of protein and protein interactions. I am generally interested in being involved in the development of innovative molecular biological methods that can be used to gain new insights about biological issues. I am particularly curious to unravel the complex and often poorly understood protein interaction pathways that are the cornerstone of understanding cellular functionality and are a fundamental necessity to describe life mechanistically.


2020 ◽  
Vol 117 (46) ◽  
pp. 28784-28794
Author(s):  
Sisi Chen ◽  
Paul Rivaud ◽  
Jong H. Park ◽  
Tiffany Tsou ◽  
Emeric Charles ◽  
...  

Single-cell measurement techniques can now probe gene expression in heterogeneous cell populations from the human body across a range of environmental and physiological conditions. However, new mathematical and computational methods are required to represent and analyze gene-expression changes that occur in complex mixtures of single cells as they respond to signals, drugs, or disease states. Here, we introduce a mathematical modeling platform, PopAlign, that automatically identifies subpopulations of cells within a heterogeneous mixture and tracks gene-expression and cell-abundance changes across subpopulations by constructing and comparing probabilistic models. Probabilistic models provide a low-error, compressed representation of single-cell data that enables efficient large-scale computations. We apply PopAlign to analyze the impact of 40 different immunomodulatory compounds on a heterogeneous population of donor-derived human immune cells as well as patient-specific disease signatures in multiple myeloma. PopAlign scales to comparisons involving tens to hundreds of samples, enabling large-scale studies of natural and engineered cell populations as they respond to drugs, signals, or physiological change.


2019 ◽  
Vol 131 (17) ◽  
pp. 5699-5703
Author(s):  
Linhai Chen ◽  
Laura J. Keller ◽  
Edward Cordasco ◽  
Matthew Bogyo ◽  
Christian S. Lentz

2020 ◽  
Author(s):  
Gregor Sturm ◽  
Tamas Szabo ◽  
Georgios Fotakis ◽  
Marlene Haider ◽  
Dietmar Rieder ◽  
...  

AbstractSummaryAdvances in single-cell technologies have enabled the investigation of T cell phenotypes and repertoires at unprecedented resolution and scale. Bioinformatic methods for the efficient analysis of these large-scale datasets are instrumental for advancing our understanding of adaptive immune responses in cancer, but also in infectious diseases like COVID-19. However, while well-established solutions are accessible for the processing of single-cell transcriptomes, no streamlined pipelines are available for the comprehensive characterization of T cell receptors. Here we propose Scirpy, a scalable Python toolkit that provides simplified access to the analysis and visualization of immune repertoires from single cells and seamless integration with transcriptomic data.Availability and implementationScirpy source code and documentation are available at https://github.com/icbi-lab/scirpy.


2016 ◽  
Author(s):  
Olivier Poirion ◽  
Xun Zhu ◽  
Travers Ching ◽  
Lana X. Garmire

AbstractDespite its popularity, characterization of subpopulations with transcript abundance is subject to a significant amount of noise. We propose to use effective and expressed nucleotide variations (eeSNVs) from scRNA-seq as alternative features for tumor subpopulation identification. We developed a linear modeling framework, SSrGE, to link eeSNVs associated with gene expression. In all the datasets tested, eeSNVs achieve better accuracies than gene expression for identifying subpopulations. Previously validated cancer-relevant genes are also highly ranked, confirming the significance of the method. Moreover, SSrGE is capable of analyzing coupled DNA-seq and RNA-seq data from the same single cells, demonstrating its value in integrating multi-omics single cell techniques. In summary, SNV features from scRNA-seq data have merits for both subpopulation identification and linkage of genotype-phenotype relationship. The method SSrGE is available at https://github.com/lanagarmire/SSrGE.


2020 ◽  
Author(s):  
Shengquan Chen ◽  
Guanao Yan ◽  
Wenyu Zhang ◽  
Jinzhao Li ◽  
Rui Jiang ◽  
...  

AbstractThe recent advancements in single-cell technologies, including single-cell chromatin accessibility sequencing (scCAS), have enabled profiling the epigenetic landscapes for thousands of individual cells. However, the characteristics of scCAS data, including high dimensionality, high degree of sparsity and high technical variation, make the computational analysis challenging. Reference-guided approach, which utilizes the information in existing datasets, may facilitate the analysis of scCAS data. We present RA3 (Reference-guided Approach for the Analysis of single-cell chromatin Acessibility data), which utilizes the information in massive existing bulk chromatin accessibility and annotated scCAS data. RA3 simultaneously models 1) the shared biological variation among scCAS data and the reference data, and 2) the unique biological variation in scCAS data that identifies distinct subpopulations. We show that RA3 achieves superior performance in many scCAS datasets. We also present several approaches to construct the reference data to demonstrate the wide applicability of RA3.


Sign in / Sign up

Export Citation Format

Share Document