scholarly journals Clinical and Pathological Evidence of Anti-GD2 Immunotherapy Induced Differentiation in Relapsed/Refractory High-Risk Neuroblastoma

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1264
Author(s):  
Jaume Mora ◽  
Alicia Castañeda ◽  
Maria Cecilia Colombo ◽  
Maite Gorostegui ◽  
Fernando Gomez ◽  
...  

Background: Neuroblastic tumors (NBTs) originate from a block in the process of differentiation. Histologically, NBTs are classified in neuroblastoma (NB), ganglioneuroblastoma (GNB), and ganglioneuroma (GN). Current therapy for high-risk (HR) NB includes chemotherapy, surgery, radiotherapy, and anti-GD2 monoclonal antibodies (mAbs). Anti-GD2 mAbs induce immunological cytoxicity but also direct cell death. Methods: We report on patients treated with naxitamab for chemorefractory NB showing lesions with long periods of stable disease. Target lesions with persisting 123I-Metaiodobenzylguanidine (MIBG) uptake after 4 cycles of immunotherapy were further evaluated by functional Magnetic Resonance Imaging (MRI) and/or Fluorodeoxyglucose (FDG)-positron emission tomography (PET). MIBG avid lesions that became non-restrictive on MRI (apparent diffusion coefficient (ADC) > 1) and/or FDG-PET negative (SUV < 2) were biopsied. Results: Twenty-seven relapse/refractory (R/R) HR-NB patients were enrolled on protocol Ymabs 201. Two (7.5%) of the 27 showed persistent bone lesions on MIBG, ADC high, and/or FDG-PET negative. Forty-four R/R HR-NB patients received chemo-immunotherapy. Twelve (27%) of the 44 developed persistent MIBG+ but FDG-PET- and/or high ADC lesions. Twelve (86%) of the 14 cases identified were successfully biopsied producing 16 evaluable samples. Histology showed ganglioneuroma maturing subtype in 6 (37.5%); ganglioneuroma mature subtype with no neuroblastic component in 4 (25%); differentiating NB with no Schwannian stroma in 5 (31%); and undifferentiated NB without Schwannian stroma in one (6%). Overall, 10 (62.5%) of the 16 specimens were histopathologically fully mature NBTs. Conclusions: Our results disclose an undescribed mechanism of action for naxitamab and highlight the limitations of conventional imaging in the evaluation of anti-GD2 immunotherapy clinical efficacy for HR-NB.

2021 ◽  
Vol 11 (3) ◽  
pp. 236
Author(s):  
Pieter H. Nienhuis ◽  
Gijs D. van Praagh ◽  
Andor W. J. M. Glaudemans ◽  
Elisabeth Brouwer ◽  
Riemer H. J. A. Slart

Imaging is becoming increasingly important for the diagnosis of large vessel vasculitis (LVV). Atherosclerosis may be difficult to distinguish from LVV on imaging as both are inflammatory conditions of the arterial wall. Differentiating atherosclerosis from LVV is important to enable optimal diagnosis, risk assessment, and tailored treatment at a patient level. This paper reviews the current evidence of ultrasound (US), 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET), computed tomography (CT), and magnetic resonance imaging (MRI) to distinguish LVV from atherosclerosis. In this review, we identified a total of eight studies comparing LVV patients to atherosclerosis patients using imaging—four US studies, two FDG-PET studies, and two CT studies. The included studies mostly applied different methodologies and outcome parameters to investigate vessel wall inflammation. This review reports the currently available evidence and provides recommendations on further methodological standardization methods and future directions for research.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hans-Jonas Meyer ◽  
Sandra Purz ◽  
Osama Sabri ◽  
Alexey Surov

Multimodal imaging has been increasingly used in oncology, especially in cervical cancer. By using a simultaneous positron emission (PET) and magnetic resonance imaging (MRI, PET/MRI) approach, PET and MRI can be obtained at the same time which minimizes motion artefacts and allows an exact imaging fusion, which is especially important in anatomically complex regions like the pelvis. The associations between functional parameters from MRI and 18F-FDG-PET reflecting different tumor aspects are complex with inconclusive results in cervical cancer. The present study correlates histogram analysis and 18F-FDG-PET parameters derived from simultaneous FDG-PET/MRI in cervical cancer. Overall, 18 female patients (age range: 32–79 years) with histopathologically confirmed squamous cell cervical carcinoma were retrospectively enrolled. All 18 patients underwent a whole-body simultaneous 18F-FDG-PET/MRI, including diffusion-weighted imaging (DWI) using b-values 0 and 1000 s/mm2. Apparent diffusion coefficient (ADC) histogram parameters included several percentiles, mean, min, max, mode, median, skewness, kurtosis, and entropy. Furthermore, mean and maximum standardized uptake values (SUVmean and SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were estimated. No statistically significant correlations were observed between SUVmax or SUVmean and ADC histogram parameters. TLG correlated inversely with p25 (r=−0.486,P=0.041), p75 (r=−0.490,P=0.039), p90 (r=−0.513,P=0.029), ADC median (r=−0.497,P=0.036), and ADC mode (r=−0.546,P=0.019). MTV also showed significant correlations with several ADC parameters: mean (r=−0.546,P=0.019), p10 (r=−0.473,P=0.047), p25 (r=−0.569,P=0.014), p75 (r=−0.576,P=0.012), p90 (r=−0.585,P=0.011), ADC median (r=−0.577,P=0.012), and ADC mode (r=−0.597,P=0.009). ADC histogram analysis and volume-based metabolic 18F-FDG-PET parameters are related to each other in cervical cancer.


Author(s):  
Nobukazu Nakasato ◽  
Akitake Kanno ◽  
Makoto Ishida ◽  
Shin-ichiro Osawa ◽  
Masaki Iwasaki ◽  
...  

This chapter highlights the importance of the revised analysis of electroencephalography (EEG) and magnetoencephalography (MEG) spike source estimation based on comprehensive case conference discussion. It discusses two typical cases of localization-related epilepsy: case 1 as a simple situation and case 2 as a complicated situation. No “gold standard” for epileptic spike analysis in EEG or MEG has been established, so several methods must be adopted to achieve the most reasonable interpretation. However, such intense and revisional analyses may be too time-consuming in clinical settings and result in arbitrary conclusions. Therefore, the authors currently use a simple method first, that is, a single dipole model for the peak or preceding upward slope of unaveraged single spikes. In the following case conference, EEG and MEG data are reviewed with seizure semiology, anatomical magnetic resonance imaging (MRI), and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). If all the findings almost agree, the clinical decision can be easily made. If not, revisional analysis of EEG/MEG is recommended using averaged spikes and principal component analysis models as well as distributed source models. In addition to EEG/MEG, the authors often order revisional analysis and additional MRI and FDG-PET studies after the conference. Even further history taking will be recommended if necessary.


2013 ◽  
Vol 20 (4) ◽  
pp. R203-R213 ◽  
Author(s):  
Kyoungjune Pak ◽  
Seong-Jang Kim ◽  
In Joo Kim ◽  
Bo Hyun Kim ◽  
Sang Soo Kim ◽  
...  

The incidence of thyroid cancer in both men and women is increasing faster than that of any other cancer. Although positron emission tomography (PET) using18F-fluorodeoxyglucose (FDG) has received much attention, the use of FDG PET for the management of thyroid cancer is limited primarily to postoperative follow-up. However, it might have a role in selected, more aggressive pathologies, and so patients at a high risk of distant metastasis may benefit from PET before surgery. As less FDG-avid thyroid cancers may lower the diagnostic accuracy of PET in preoperative assessment, an understanding of FDG avidity is important for the evaluation of thyroid cancer. FDG avidity has been shown to be associated with tumor size, lymph node metastasis, and glucose transporter expression and differentiation. As PET is commonly used in clinical practice, the detection of incidentalomas by PET is increasing. However, incidentalomas detected by PET have a high risk of malignancy. Clinicians handling cytologically indeterminate nodules face a dilemma regarding a procedure for a definitive diagnosis, usually lobectomy. With ‘nondiagnostic (ND)’ fine-needle biopsy (FNA), PET has shown a negative predictive value (NPV) of 100%, which indicates that negative uptake in a ND FNA procedure accurately excludes malignancy. With ‘atypia of undetermined significance’ or ‘follicular neoplasm’, the sensitivity and NPV of PET are 84 and 88%. PET does not provide additional information for the preoperative assessment of thyroid cancer. However, factors associated with FDG positivity are related to a poor prognosis; therefore, FDG PET scans before surgery may facilitate the prediction of the prognosis of differentiated thyroid cancer.


2020 ◽  
Author(s):  
Charles Mesguich ◽  
Cyrille Hulin ◽  
Valerie Latrabe ◽  
Julien Asselineau ◽  
Laurence Bordenave ◽  
...  

BACKGROUND The International Myeloma Working Group recommends the use of 18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for treatment response evaluation, as it is superior to magnetic resonance imaging (MRI). However, at initial staging, the sensitivity of FDG-PET remains inferior to that of MRI. Therefore, there is a need for an imaging technique that could have a sensitivity equal to that of MRI at diagnosis and could serve to evaluate therapy. 18F-choline has shown increased sensitivity when compared with 18-FDG, with about 75% more lesions detected in patients with relapsed or progressive multiple myeloma (MM). OBJECTIVE Our primary objective is to prospectively compare the detection rate of bone lesions by 18F-choline PET/CT (FCH-PET) and FDG-PET in newly diagnosed MM. Our secondary objectives are to assess the accuracy of both PET modalities for the detection of bone lesions and the diagnosis of diffuse disease, to assess the detection rate of extramedullary lesions. METHODS We will prospectively include 30 patients in a paired comparative accuracy study. Patients with de novo MM will undergo FCH-PET, FDG-PET, and whole-body MRI (WB-MRI) within a 3-week period. WB-MRI will be composed of conventional sequences on the spine and pelvis and of whole-body diffusion axial sequences. The following 6 skeletal areas will be defined: skull, sternum/costal grid, spine, pelvis, superior limbs, and inferior limbs. The number of focal lesions, their respective localization, and intensity of uptake will be retrieved for each skeletal area. Readings will be performed blinded from other imaging techniques. The reference standard will be WB-MRI. Focal lesions present on PET/CT but not on WB-MRI will require a decision made with a consensus of experts based on clinical and imaging data. The number of bone lesions and number of extramedullary lesions will be compared using the Wilcoxon test. The accuracy of FCH-PET and FDG-PET will be compared using the McNemar test. RESULTS The study started in September 2019, and enrollment is ongoing. As of June 2020, 8 participants have been included. Data collection is expected to be completed in June 2021, and the results are expected to be available in December 2021. CONCLUSIONS This study will assess if FCH-PET is superior to FDG-PET for the evaluation of MM tumor burden. This will pave the way for future prospective evaluations of the prognostic value of 18-FCH for treatment response evaluation in MM patients. Additionally, this work may provide new perspectives for better assessment of the risk of smoldering MM progressing to MM. CLINICALTRIAL ClinicalTrials.gov NCT03891914; https://clinicaltrials.gov/ct2/show/NCT03891914 INTERNATIONAL REGISTERED REPORT DERR1-10.2196/17850


1989 ◽  
Vol 28 (05) ◽  
pp. 187-192 ◽  
Author(s):  
Gabriele Stoppe ◽  
K. Wildhagen ◽  
G. J. Meyer ◽  
O. Schober

Central nervous system involvement has been found in 30-75% of all cases of systemic lupus erythematosus (SLE). Up to now, clinical diagnosis is difficult and there are no markers for disease activity. We have compared cranial computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) using fluorodesoxyglucose (FDG) in two cases. FDG-PET is shown to be the most sensitive method demonstrating even reversible deficits and a better correlation with other neurological findings. MRI seems to be more sensitive than CT. A survey of the literature concerning imaging methods in neuropsychiatric SLE is given. The special problem of neuronal desactivation by antineuronal activity is discussed.


Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 357
Author(s):  
Natale Quartuccio ◽  
Riccardo Laudicella ◽  
Antonio Vento ◽  
Salvatore Pignata ◽  
Maria Vittoria Mattoli ◽  
...  

Aim: Beyond brain computed tomography (CT) scan, Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) hold paramount importance in neuro-oncology. The aim of this narrative review is to discuss the literature from 2015 to 2020, showing advantages or complementary information of fluorine-18 fluorodeoxyglucose (18F-FDG) PET imaging to the anatomical and functional data offered by MRI in patients with glioma. Methods: A comprehensive Pubmed/MEDLINE literature search was performed to retrieve original studies, with a minimum of 10 glioma patients, published from 2015 until the end of April 2020, on the use of 18F-FDG PET in conjunction with MRI. Results: Twenty-two articles were selected. Combined use of the two modalities improves the accuracy in predicting prognosis, planning treatments, and evaluating recurrence. Conclusion: According to the recent literature, 18F-FDG PET provides different and complementary information to MRI and may enhance performance in the whole management of gliomas. Therefore, integrated PET/MRI may be particularly useful in gliomas, since it could provide accurate morphological and metabolic information in one-shoot examination and improve the diagnostic value compared to each of procedures.


Hematology ◽  
2015 ◽  
Vol 2015 (1) ◽  
pp. 272-278 ◽  
Author(s):  
S. Vincent Rajkumar

Abstract Multiple myeloma (MM) is a plasma cell malignancy historically defined by the presence of end-organ damage, specifically, hypercalcemia, renal failure, anemia, and bone lesions (CRAB features) that can be attributed to the neoplastic process. In 2014, the International Myeloma Working Group (IMWG) updated the diagnostic criteria for MM to add specific biomarkers that can be used to make the diagnosis of the disease in patients who did not have CRAB features. In addition, the update allows modern imaging methods including computed tomography (CT) and positron emission tomography-CT to diagnose MM bone disease. These changes enable early diagnosis, and allow the initiation of effective therapy to prevent the development of end-organ damage in patients who are at the highest risk. This article reviews these and several other clarifications and revisions that were made to the diagnostic criteria for MM and related disorders. The updated disease definition for MM also automatically resulted in a revision to the diagnostic criteria for the asymptomatic phase of the disease termed smoldering MM (SMM). Thus the current diagnosis and risk-stratification of SMM is also reviewed in this article. Using specific prognostic factors, it is possible to identify a subset of patients with SMM who have a risk of progression to MM of 25% per year (high-risk SMM). An approach to the management of patients with low- and high-risk SMM is discussed.


2008 ◽  
Vol 7 (1) ◽  
pp. 46-51
Author(s):  
David Llewellyn ◽  
Alison Hodrien ◽  
Victoria Llewellyn

Neuroimaging is increasingly important in psychology, yet psychologists can fall prey to misconceptions. We examined the presentation of key radiological techniques in 12 widely distributed contemporary psychology texts. Errors were common in descriptions of computed tomography (CT), magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). For example, PET images are generated by detecting pairs of photons, not the direct measurement of positrons. Similarly, many authors omit the need for a radio frequency pulse in MRI, implying that the technique simply relies on the application of a magnetic field. Misconceptions should be addressed in an attempt to reduce levels of confusion and maximise the contribution of neuroimaging data to psychological theorising.


Sign in / Sign up

Export Citation Format

Share Document