scholarly journals CD19 Chimeric Antigen Receptor-Exosome Targets CD19 Positive B-lineage Acute Lymphocytic Leukemia and Induces Cytotoxicity

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1401
Author(s):  
Shabirul Haque ◽  
Sarah R. Vaiselbuh

CAR-T cell therapy is not without some clinical adverse effects, namely cytokine storms, due to a massive release of cytokines when CAR-T cells multiply in the body. Our goal was to develop exosomes expressing CD19 CAR to treat CD19-positive B-cell malignancies, instead of using whole CD19 CAR-T cells, thereby reducing the clinical risk of uncontrolled cytokine storms. Exosomes are extracellular nanovesicles (30–150 nm), composed of lipids, proteins, and nucleic acids, that carry the fingerprint of their parent cells. Exosomes are a preferred delivery system in nano-immunotherapy. Here, HEK293T parent cells were transduced with CD19 CAR plasmids and cellular CD19 CAR expression was confirmed. Exosomes (Exo-CD19 CAR) were isolated from the conditioned medium of non-transduced (WT) and CD19 CAR plasmid transduced HEK293T cells. Consequently, CD19 B-lineage leukemia cell lines were co-cultured with Exo-CD19 CAR and cell death was measured. Our data show that Exo-CD19 CAR treatment induced cytotoxicity and elevated pro-apoptotic genes in CD19-positive leukemia B-cells without inducing cell death in CD19-negative cells. Overall, the novel CD19 CAR exosomes target the CD19 surface antigens of leukemic B-cells and can induce contact-dependent cytotoxicity.

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2612
Author(s):  
Lei Tao ◽  
Muhammad Asad Farooq ◽  
Yaoxin Gao ◽  
Li Zhang ◽  
Congyi Niu ◽  
...  

B cell aplasia caused by “on-target off-tumor” toxicity is one of the clinical side effects during CD19-targeted chimeric antigen receptor (CAR) T (CD19-CAR-T) cells treatment for B cell malignancies. Persistent B cell aplasia was observed in all patients with sustained remission, which increased the patients’ risk of infection. Some patients even died due to infection. To overcome this challenge, the concept of incorporating an inhibitory CAR (iCAR) into CAR-T cells was introduced to constrain the T cells response once an “on-target off-tumor” event occurred. In this study, we engineered a novel KIR/PD-1-based inhibitory CAR (iKP CAR) by fusing the extracellular domain of killer cell immunoglobulin-like receptors (KIR) 2DL2 (KIR2DL2) and the intracellular domain of PD-1. We also confirmed that iKP CAR could inhibit the CD19 CAR activation signal via the PD-1 domain and CD19-CAR-T cells bearing an iKP CAR (iKP-19-CAR-T) exerted robust cytotoxicity in vitro and antitumor activity in the xenograft model of CD19+HLA-C1− Burkitt’s lymphoma parallel to CD19-CAR-T cells, whilst sparing CD19+HLA-C1+ healthy human B cells both in vitro and in the xenograft model. Meanwhile, iKP-19-CAR-T cells exhibited more naïve, less exhausted phenotypes and preserved a higher proportion of central memory T cells (TCM). Our data demonstrates that the KIR/PD-1-based inhibitory CAR can be a promising strategy for preventing B cell aplasia induced by CD19-CAR-T cell therapy.


Author(s):  
Álvaro Martínez-Rubio ◽  
Salvador Chulián ◽  
Cristina Blázquez Goñi ◽  
Antonio Pérez Martínez ◽  
Manuel Ramírez Orellana ◽  
...  

Chimeric Antigen Receptor (CAR) T-cell therapy has demonstrated high rates of response in recurrent B-cell Acute Lymphoblastic Leukemia in children and young adults. Despite this success, a fraction of patients experience relapse after treatment. Relapse is often preceded by recovery of healthy B cells, which suggests loss or dysfunction of CAR T cells in bone marrow. This site is harder to access, and thus is not monitored as frequently as peripheral blood. Understanding the interplay between B cells, leukemic cells and CAR T cells in bone marrow is paramount in ascertaining the causes of lack of response. In this paper, we put forward a mathematical model representing the interaction between constantly renewing B cells, CAR T cells and leukemic cells in the bone marrow. Our model accounts for the maturation dynamics of B cells and incorporates effector and memory CAR T cells. The model provides a plausible description of the dynamics of the various cellular compartments in bone marrow after CAR T infusion. After exploration of the parameter space, we found that the dynamics of CAR T product and disease were independent of the dose injected, initial B-cell load and tumor burden. We also show theoretically the importance of CAR T product attributes in determining therapy outcome, and have studied a variety of possible response scenarios, including second dosage schemes. We conclude by setting out ideas for the refinement of the model.


2020 ◽  
Vol 8 (2) ◽  
pp. e001150 ◽  
Author(s):  
Zhen Zhang ◽  
Xinfeng Chen ◽  
Yonggui Tian ◽  
Feng Li ◽  
Xuan Zhao ◽  
...  

BackgroundTumor relapse due to mutation in CD19 can hinder the efficacy of chimeric antigen receptor (CAR)-T cell therapy. Herein, we focused on lymphoma patients whose B cells exhibited a point mutation in CD19 of B cells after CAR-T cell infusion.MethodsThe CAR-T and CD19+ B cells from peripheral blood or bone marrow were assessed using flow cytometry. Genome sequencing was conducted to identify the molecular characteristics of CAR-T and CD19+ B cells from pre-relapse and postrelapse samples. CD19 in CARs comprising single chain fragments variable (scFV) antibody with FMC63 or 21D4 was constructed. The cytotoxic efficacy of CAR-T cells was also evaluated via in vitro and in vivo experiments.ResultsA patient with high-grade B cell lymphoma exhibited complete response, but the lymphoma relapsed in her left breast at 6 months after CD19 CAR (FMC63)-T cell infusion. A mutation was found in exon 3 of CD19 (p.163. R-L) in malignant B cells of the patient. In two lymphoma patients who exhibited resistance to CAR-T cell therapy, a mutation was detected in exon 3 of CD19 (p.174. L-V). Functional analysis revealed that FMC63 CAR-T cells exhibited antitumor ability against wild-type CD19+ cells but were unable to eradicate these two types of mutated CD19+ cells. Interestingly, 21D4 CAR-T cells were potentially capable of eradicating these mutated CD19+ cells and exhibiting high antitumor capacity against CD19+ cells with loss of exon 1, 2, or 3.ConclusionsThese findings suggest that point mutation can facilitate immune escape from CAR-T cell therapy and that alternative CAR-T cells can effectively eradicate the mutated B cells, providing an individualized therapeutic approach for lymphoma patients showing relapse.


2021 ◽  
Vol 22 (12) ◽  
pp. 6371
Author(s):  
Álvaro Martínez-Rubio ◽  
Salvador Chulián ◽  
Cristina Blázquez Blázquez Goñi ◽  
Manuel Ramírez Ramírez Orellana ◽  
Antonio Pérez Pérez Martínez ◽  
...  

Chimeric Antigen Receptor (CAR) T-cell therapy has demonstrated high rates of response in recurrent B-cell Acute Lymphoblastic Leukemia in children and young adults. Despite this success, a fraction of patients’ experience relapse after treatment. Relapse is often preceded by recovery of healthy B cells, which suggests loss or dysfunction of CAR T-cells in bone marrow. This site is harder to access, and thus is not monitored as frequently as peripheral blood. Understanding the interplay between B cells, leukemic cells, and CAR T-cells in bone marrow is paramount in ascertaining the causes of lack of response. In this paper, we put forward a mathematical model representing the interaction between constantly renewing B cells, CAR T-cells, and leukemic cells in the bone marrow. Our model accounts for the maturation dynamics of B cells and incorporates effector and memory CAR T-cells. The model provides a plausible description of the dynamics of the various cellular compartments in bone marrow after CAR T infusion. After exploration of the parameter space, we found that the dynamics of CAR T product and disease were independent of the dose injected, initial B-cell load, and leukemia burden. We also show theoretically the importance of CAR T product attributes in determining therapy outcome, and have studied a variety of possible response scenarios, including second dosage schemes. We conclude by setting out ideas for the refinement of the model.


2021 ◽  
Vol 23 (1) ◽  
pp. 405
Author(s):  
Emanuela Guerra ◽  
Roberta Di Pietro ◽  
Mariangela Basile ◽  
Marco Trerotola ◽  
Saverio Alberti

Chimeric antigen receptor (CAR) therapy is based on patient blood-derived T cells and natural killer cells, which are engineered in vitro to recognize a target antigen in cancer cells. Most CAR-T recognize target antigens through immunoglobulin antigen-binding regions. Hence, CAR-T cells do not require the major histocompatibility complex presentation of a target peptide. CAR-T therapy has been tremendously successful in the treatment of leukemias. On the other hand, the clinical efficacy of CAR-T cells is rarely detected against solid tumors. CAR-T-cell therapy of cancer faces many hurdles, starting from the administration of engineered cells, wherein CAR-T cells must encounter the correct chemotactic signals to traffic to the tumor in sufficient numbers. Additional obstacles arise from the hostile environment that cancers provide to CAR-T cells. Intense efforts have gone into tackling these pitfalls. However, we argue that some CAR-engineering strategies may risk missing the bigger picture, i.e., that a successful CAR-T-cell therapy must efficiently intertwine with the complex and heterogeneous responses that the body has already mounted against the tumor. Recent findings lend support to this model.


2021 ◽  
Vol 22 (16) ◽  
pp. 8996
Author(s):  
Theresa Haslauer ◽  
Richard Greil ◽  
Nadja Zaborsky ◽  
Roland Geisberger

Chimeric antigen receptor (CAR) T-cells (CAR T-cells) are a promising therapeutic approach in treating hematological malignancies. CAR T-cells represent engineered autologous T-cells, expressing a synthetic CAR, targeting tumor-associated antigens (TAAs) independent of major histocompatibility complex (MHC) presentation. The most common target is CD19 on B-cells, predominantly used for the treatment of lymphoma and acute lymphocytic leukemia (ALL), leading to approval of five different CAR T-cell therapies for clinical application. Despite encouraging clinical results, treatment of other hematological malignancies such as acute myeloid leukemia (AML) remains difficult. In this review, we focus especially on CAR T-cell application in different hematological malignancies as well as strategies for overcoming CAR T-cell dysfunction and increasing their efficacy.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Chunyi Shen ◽  
Zhen Zhang ◽  
Yonggui Tian ◽  
Feng Li ◽  
Lingxiao Zhou ◽  
...  

Abstract Background Chimeric antigen receptor T (CAR-T) cell therapy has limited effects in the treatment of solid tumors. Sulforaphane (SFN) is known to play an important role in inhibiting tumor growth, but its effect on CAR-T cells remains unclear. The goal of the current study was to determine whether combined CAR-T cells and SFN could provide antitumor efficacy against solid tumors. Methods The effect of combined SFN and CAR-T cells was determined in vitro using a co-culture system and in vivo using a xenograft mouse model. We further validated the effects of combination therapy in patients with cancer. Results In vitro, the combination of SFN and CAR-T cells resulted in enhanced cytotoxicity and increased lysis of tumor cells. We found that SFN suppressed programmed cell death 1 (PD-1) expression in CAR-T cells and potentiated antitumor functions in vitro and in vivo. As a ligand of PD-1, programmed cell death ligand 1 (PD-L1) expression was also decreased in tumor cells after SFN treatment. In addition, β-TrCP was increased by SFN, resulting in higher activation of ubiquitination-mediated proteolysis of PD-L1, which induced PD-L1 degradation. The combination of SFN and CAR-T cell therapy acted synergistically to promote better immune responses in vivo compared with monotherapy. In clinical treatments, PD-1 expression was lower, and proinflammatory cytokine levels were higher in patients with various cancers who received CAR-T cells and took SFN orally than that in the control group. Conclusion SFN improves the cytotoxicity of CAR-T cells by modulating the PD-1/PD-L1 pathway, which may provide a promising strategy for the combination of SFN with CAR-T cells for cancer immunotherapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1423-1423
Author(s):  
Lijuan Ding ◽  
Jiazhen Cui ◽  
Yongxian Hu ◽  
Huijun Xu ◽  
Yanlei Zhang ◽  
...  

Abstract Introduction: In tumor cell immunity, T cells play a central regulatory role. T cells are divided into several major subsets based on different cell surface molecules to maintain the body's immune balance. Detection of T lymphocyte expression levels can assist in the dynamic analysis of changes in cellular immune function during treatment. CAR-T cell therapy is one of the most promising immune therapies in recent years. The current research focuses on the immune function of CAR-T cells, while ignoring the changes in the body immune system itself. In fact, the body's immune function plays an important role in the anti-tumor immune response, and the changes in the body immune system are likely to be the main reason of long-term maintenance of remission after CAR-T cells exhausted. In our study, we detect the changes of T lymphocyte subsets after CAR-T cell infusion, to explore the effect of CAR-T cell therapy on body immune system and its possible mechanism. Methods: Peripheral blood of 10 patients after CAR-T cell therapy at different time points were collected. Flow cytometry was used to detect lymphocyte surface molecules including CD3, CAR, CD4, CD8, CD45RA and CCR7 in the scatter plot. T lymphocyte populations were isolated and the ratio of CAR+ and CAR- cells was labeled, and cell subpopulations were labeled in CAR+ and CAR-cells, respectively. Statistical analysis was performed using the R-Studio software package. When comparing the proportion of T cell subsets at different time points, repeated measures of variance analysis were used. Results: 10 patients with good clinical response and complete data were analyzed and summarized. The proportion of CD8+ cells in CAR+ cell population was (61.4±32.5) % at the initial of CRS, and went up to (74.1±24.5) % as CAR-T cells proliferated to a peak level. After that, CD8+ cells began to decline as CAR-T cells decreased (F= 0.647, P= 0.531). The changes of CD4+ cells went the opposite way (F= 2.678, P= 0.087). The same change patterns of CD8+ and CD4+ cells were shared in CAR- cell population. In CAR+, CAR+CD4+, CAR+CD8+ cell populations, CD45RA+CCR7- cells (effector T cells) have decreased before CAR-T cell peak level. We assumed that effector T cells began to decrease as tumor cells were completely cleared. CD45RA-CCR7-, CD45RA-CCR7+, CD45RA+CCR7+ cells (effector memory T cells, central memory T cells, naïve T cells) gradually increased as the body immune system began to recover. ALL the change patterns were shared in CAR- cells. Conclusion: The above results suggest that the expansion of CAR-T cells in vivo are mainly CD8+ cells, and are mainly effector T cells that directly exercising killing function. The CAR- cell population shared the same changes of cell subsets with the CAR+ cell population, suggesting that CAR-T cells have certain optimization effects on the body immune system. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Weiqi Yan ◽  
Zhuojun Liu ◽  
Jia Liu ◽  
Yuanshi Xia ◽  
Kai Hu ◽  
...  

T cell immune protection plays a pivotal role in the treatment of patients with hematological malignancies. However, T cell exhaustion might lead to the possibility of immune escape of hematological malignancies. Adoptive cell therapy (ACT) with chimeric antigen receptor T (CAR-T) cells can restore the activity of exhausted T cell through reprogramming and is widely used in the treatment of relapsed/refractory (r/r) hematological malignancies. Of note, CD19, CD20, CD30, CD33, CD123, and CD269 as ideal targets have shown extraordinary potential for CAR-T cell therapy and other targets such as CD23 and SLAMF7 have brought promising future for clinical trials. However, CAR-T cells can also produce some adverse events after treatment of hematological malignancies, such as cytokine release syndrome (CRS), neurotoxicity, and on-target/off-tumor toxicity, which may cause systemic immune stress inflammation, destruction of the blood-brain barrier, and even normal tissue damage. In this review, we aim to summarize the composition of CAR-T cell and its application in the treatment of acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), non-Hodgkin’s lymphoma (NHL), Hodgkin’s lymphoma (HL), multiple myeloma (MM), and acute myeloid leukemia (AML). Moreover, we will review the disadvantages of CAR-T cell therapy and propose several comprehensive recommendations which might guide its development.


Leukemia ◽  
2020 ◽  
Vol 35 (1) ◽  
pp. 75-89 ◽  
Author(s):  
Kristen Fousek ◽  
Junji Watanabe ◽  
Sujith K. Joseph ◽  
Ann George ◽  
Xingyue An ◽  
...  

AbstractChimeric antigen receptor (CAR) T-cells targeting CD19 demonstrate remarkable efficacy in treating B-lineage acute lymphoblastic leukemia (BL-ALL), yet up to 39% of treated patients relapse with CD19(−) disease. We report that CD19(−) escape is associated with downregulation, but preservation, of targetable expression of CD20 and CD22. Accordingly, we reasoned that broadening the spectrum of CD19CAR T-cells to include both CD20 and CD22 would enable them to target CD19(−) escape BL-ALL while preserving their upfront efficacy. We created a CD19/20/22-targeting CAR T-cell by coexpressing individual CAR molecules on a single T-cell using one tricistronic transgene. CD19/20/22CAR T-cells killed CD19(−) blasts from patients who relapsed after CD19CAR T-cell therapy and CRISPR/Cas9 CD19 knockout primary BL-ALL both in vitro and in an animal model, while CD19CAR T-cells were ineffective. At the subcellular level, CD19/20/22CAR T-cells formed dense immune synapses with target cells that mediated effective cytolytic complex formation, were efficient serial killers in single-cell tracking studies, and were as efficacious as CD19CAR T-cells against primary CD19(+) disease. In conclusion, independent of CD19 expression, CD19/20/22CAR T-cells could be used as salvage or front-line CAR therapy for patients with recalcitrant disease.


Sign in / Sign up

Export Citation Format

Share Document