scholarly journals The Impact of Cell-Free DNA Analysis on the Management of Retinoblastoma

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1570
Author(s):  
Amy Gerrish ◽  
Helen Jenkinson ◽  
Trevor Cole

Retinoblastoma is a childhood eye cancer, mainly caused by mutations in the RB1 gene, which can be somatic or constitutional. Unlike many other cancers, tumour biopsies are not performed due to the risk of tumour dissemination. As a result, until recently, somatic genetic analysis was only possible if an affected eye was removed as part of a treatment. Several recent proof of principle studies have demonstrated that the analysis of tumour-derived cell-free DNA, either obtained from ocular fluid or blood plasma, has the potential to advance the diagnosis and influence the prognosis of retinoblastoma patients. It has been shown that a confirmed diagnosis is possible in retinoblastoma patients undergoing conservative treatment. In vivo genetic analysis of retinoblastoma tumours is also now possible, allowing the potential identification of secondary genetic events as prognostic biomarkers. In addition, noninvasive prenatal diagnosis in children at risk of inheriting retinoblastoma has been developed. Here, we review the current literature and discuss the potential impact of cell-free DNA analysis on both the diagnosis and treatment of retinoblastoma patients and their families.


2017 ◽  
Author(s):  
Havell Markus ◽  
Tania Contente-Cuomo ◽  
Winnie S. Liang ◽  
Mitesh J. Borad ◽  
Shivan Sivakumar ◽  
...  

AbstractPre-analytical factors can significantly affect circulating cell-free DNA (cfDNA) analysis. However, there are few robust methods to rapidly assess sample quality and the impact of pre-analytical processing. To address this gap and to evaluate effects of DNA extraction methods and blood collection tubes on cfDNA yield and fragment size, we developed a multiplexed droplet digital PCR (ddPCR) assay with 5 short and 4 long amplicons targeting single copy genomic loci (mean amplicon size: 71 bp and 471 bp respectively). Using this assay, we compared performance of 7 cfDNA extraction kits and found cfDNA yield and fragment size varies significantly between them. We also compared 3 blood collection protocols used to collect plasma samples from 23 healthy volunteers (EDTA tubes processed within 1 hour and Cell-free DNA BCT tubes at ambient temperature processed within 24 hours and 72 hours of collection). To assess whether cell-stabilizing preservative in BCT tubes introduced noise in cfDNA, we performed digital targeted sequencing. We found no significant differences in cfDNA yield, fragment size and background sequencing noise between these protocols. In 219 clinical samples tested for quality using the ddPCR assay, cfDNA fragment size was significantly shorter in plasma samples immediately processed for ctDNA analysis compared to archived samples, suggesting background DNA contributed by lysed peripheral blood cells. In summary, we describe a multiplexed ddPCR approach that enables cfDNA quality assessment and could inform the design of future circulating tumor DNA studies.Gene namesNone



Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Selena Y. Lin ◽  
Yue Luo ◽  
Matthew M. Marshall ◽  
Barbara J. Johnson ◽  
Sung R. Park ◽  
...  

This study assessed three commercially available cell-free DNA (cfDNA) extraction kits and the impact of a PEG-based DNA cleanup procedure (DNApure) on cfDNA quality and yield. Six normal donor urine and plasma samples and specimens from four pregnant (PG) women carrying male fetuses underwent extractions with the JBS cfDNA extraction kit (kit J), MagMAX Cell-Free DNA Extraction kit (kit M), and QIAamp Circulating Nucleic Acid Kit (kit Q). Recovery of a PCR product spike-in, endogenous TP53, and Y-chromosome DNA was used to assess kit performance. Nucleosomal-sized DNA profiles varied among the kits, with prominent multi-nucleosomal-sized peaks present in urine and plasma DNA isolated by kits J and M only. Kit J recovered significantly more spike-in DNA than did kits M or Q (p < 0.001) from urine, and similar amounts from plasma (p = 0.12). Applying DNApure to kit M- and Q-isolated DNA significantly improved the amplification efficiency of spike-in DNA from urine (p < 0.001) and plasma (p ≤ 0.013). Furthermore, kit J isolated significantly more Y-chromosome DNA from PG urine compared to kit Q (p = 0.05). We demonstrate that DNApure can provide an efficient means of improving the yield and purity of cfDNA and minimize the effects of pre-analytical biospecimen variability on liquid biopsy assay performance.



2011 ◽  
Vol 57 (4) ◽  
pp. 633-636 ◽  
Author(s):  
Thomas Beiter ◽  
Annunziata Fragasso ◽  
Jens Hudemann ◽  
Andreas M Nieß ◽  
Perikles Simon

BACKGROUND Increased plasma concentrations of cell-free DNA (cf-DNA) are considered a hallmark of various clinical conditions. Despite intensive research in this field, limited data are available concerning the time course of release and clearance of cf-DNA in vivo. METHODS We extracted cf-DNA from plasma samples taken before and immediately after a 10-km cross-country run, and from samples taken before, immediately after, and 30 min after exhaustive short-term treadmill exercise. The contribution of nuclear (nDNA) and mitochondrial DNA (mtDNA) was measured by quantitative real-time PCR. The incremental treadmill exercise setup was exploited to delineate the precise sequencing and timing of cf-nDNA, lactate, and high-mobility group box 1 protein (HMGB1) release during the exercise and recovery phases. RESULTS Postexercise plasma cf-nDNA concentrations in cross-country and treadmill runners were significantly increased, by 7.6-fold and 9.9-fold, respectively (P &lt; 0.001). cf-nDNA concentrations were not correlated with age, sex, or body mass index. Plasma concentrations of cf-nDNA and HMGB1 in postexercise samples of treadmill runners were significantly correlated (r = 0.84; P = 0.004). cf-mtDNA concentrations were not affected by treadmill exercise. Time-course analyses demonstrated that cf-nDNA is released within minutes after the onset of exercise and is rapidly cleared from the circulation after the cessation of exercise. Nearly congruent kinetics for cf-nDNA, lactate, and HMGB1 were observed during the exercise phase. CONCLUSIONS A single bout of exhaustive short-term treadmill exercise constitutes a versatile model system suitable for addressing basic questions about cf-DNA biology.



2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3043-3043
Author(s):  
Grace Q. Zhao ◽  
Yun Bao ◽  
Heng Wang ◽  
Wanping Hu ◽  
John Coller ◽  
...  

3043 Background: Assessing the genomic and epigenomic changes on plasma cell-free DNA (cfDNA) using next-generation sequencing (NGS) has become increasingly important for cancer detection and treatment selection guidance. However, two major hurdles of existing targeted NGS methods make them impractical for the clinical setting. First, there is no comprehensive, end to end, kit solution available for targeted methylation sequencing (TMS), let alone one that analyzes both mutation and methylation information in one assay. Second, the low yield of cfDNA from clinical blood samples presents a major challenge for conducting multi-omic analysis. Thus, an assay that is capable of both genomic and epigenomic analysis would be advantageous for clinical research and future diagnostic assays. Methods: Here, we report the performance of Point-n-SeqTM dual analysis, a kit solution that can provide in-depth DNA analysis with highly flexible and customizable focused panels to enable both genomic and epigenomic analysis without sample splitting. With custom panels of tens to thousands of markers designed with > 99% first-pass success rate, we conducted both performance validation and multi-center, multi-operator, reproducibility studies. Using spike-in titration of cancer cell-line gDNA with known mutation and methylation profiles, Point-n-Seq assay achieved a reliable detection level down to 0.003% of tumor DNA with a linear relationship between the measured and expected fractions. Benchmarked with conventional targeted sequencing and methylation sequencing, Point-n-Seq solution also demonstrated improved performance, speed and shortened hands-on time. Results: In a pilot clinical study, a colorectal cancer (CRC) TMS panel covering 560 methylation markers and a mutation panel with > 350 hotspot mutations in 22 genes were used in the dual assay. Using 1ml of plasma from late-stage CRC patients, cancer-specific methylation signals were detected in all samples tested, and oncogenic mutations. In an early-stage cohort (33 stage I/II CRC patient ), comparison of the analysis between tumor-informed, personalized-mutation panels (̃100 private SNVs) for each patient and the tumor-independent CRC methylation panels were conducted. The initial results showed that tumor-independent TMS assay achieved a comparable detection compared to the personalized tumor-informed approach. Moreover, cfDNA size information (fragmentome) is also integrated into the analysis of the same Point-n-Seq workflow to improve the assay sensitivity. Conclusions: Point-n-Seq dual analysis is poised to advance both research and clinical applications of early cancer detection, minimal residual disease (MRD), and monitoring.



2002 ◽  
Vol 8 (3) ◽  
pp. 237-242 ◽  
Author(s):  
J Hong ◽  
M V Tejada-Simon ◽  
V M Rivera ◽  
Y CQ Zang ◽  
J Z Zhang

Viral infections are potentially associated with the etiology and pathogenesis of multiple sclerosis (MS). It has been speculated that the treatment efficacy of interferon beta (IFN beta) in MS may relate to its anti-viral properties. The study was undertaken to evaluate the in vivo anti-viral effects of IFN beta-1a in patients with MS. Human herpesvirus-6 (HHV-6) was studied as an example for being a latent neurotropic virus. IFN beta used at concentrations of approximately 0.5 mg/ml was shown to significantly reduce in vitro HHV-6 replication in a susceptible T-cell line. Sera derived from 23 MS patients treated with IFN beta-1a were examined for serum cell-free DNA of HHV-6 as an indicator for viral replication and the reactivity of IgM antibodies to a recombinant HHV-6 virion protein containing a known immunoreactive region. The results were compared with those of control sera obtained from untreated MS (n=29) and healthy individuals (n=21). The findings indicated that IFN beta treatment significantly reduced HHV-6 replication as evident by decreased cell-free DNA in treated MS specimens. The results correlated with decreased IgM reactivity to the HHV-6 antigen in treated MS patients compared to untreated controls, suggesting reduced exposure to HHV-6. The findings were confirmed in paired sera obtained from seven MS patients before and after the treatment. The study provides new evidence indicating that IFN beta has potent in vivo anti-viral effects that may contribute to the treatment efficacy in MS.



2021 ◽  
Vol 12 ◽  
Author(s):  
Quentin Vallé ◽  
Béatrice B. Roques ◽  
Alain Bousquet-Mélou ◽  
David Dahlhaus ◽  
Felipe Ramon-Portugal ◽  
...  

The increase of multidrug-resistant (MDR) bacteria has renewed interest in old antibiotics, such as minocycline, that can be active against various MDR Gram-negative pathogens. The elimination of minocycline by both kidneys and liver makes it suitable for impaired renal function patients. However, the drawback is the possible elimination of a high amount of drug in the intestines, with potential impact on the digestive microbiota during treatment. This study aimed to predict the potential activity of minocycline against Enterobacterales in the gut after parenteral administration, by combining in vivo and in vitro studies. Total minocycline concentrations were determined by UPLC-UV in the plasma and intestinal content of piglets following intravenous administration. In parallel, the in vitro activity of minocycline was assessed against two Escherichia coli strains in sterilized intestinal contents, and compared to activity in a standard broth. We found that minocycline concentrations were 6–39 times higher in intestinal contents than plasma. Furthermore, minocycline was 5- to 245-fold less active in large intestine content than in a standard broth. Using this PK-PD approach, we propose a preclinical pig model describing the link between systemic and gut exposure to minocycline, and exploring its activity against intestinal Enterobacterales by taking into account the impact of intestinal contents.



2018 ◽  
Vol 45 (5) ◽  
pp. 302-311 ◽  
Author(s):  
Elisa Bevilacqua ◽  
Jacques C. Jani ◽  
Alexandra Letourneau ◽  
Silvia F. Duiella ◽  
Pascale Kleinfinger ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document