scholarly journals Molecular Mechanisms Associated with Brain Metastases in HER2-Positive and Triple Negative Breast Cancers

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4137
Author(s):  
Sarah Bryan ◽  
Isabell Witzel ◽  
Kerstin Borgmann ◽  
Leticia Oliveira-Ferrer

Breast cancer (BC) is the most frequent cause of cancer-associated death for women worldwide, with deaths commonly resulting from metastatic spread to distant organs. Approximately 30% of metastatic BC patients develop brain metastases (BM), a currently incurable diagnosis. The influence of BC molecular subtype and gene expression on breast cancer brain metastasis (BCBM) development and patient prognosis is undeniable and is, therefore, an important focus point in the attempt to combat the disease. The HER2-positive and triple-negative molecular subtypes are associated with an increased risk of developing BCBM. Several genetic and molecular mechanisms linked to HER2-positive and triple-negative BC breast cancers appear to influence BCBM formation on several levels, including increased development of circulating tumor cells (CTCs), enhanced epithelial-mesenchymal transition (EMT), and migration of primary BC cells to the brain and/or through superior local invasiveness aided by cancer stem-like cells (CSCs). These specific BC characteristics, together with the ensuing developments at a clinical level, are presented in this review article, drawing a connection between research findings and related therapeutic strategies aimed at preventing BCBM formation and/or progression. Furthermore, we briefly address the critical limitations in our current understanding of this complex topic, highlighting potential focal points for future research.

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xiao-Xiao Li ◽  
Li-Juan Wang ◽  
Jie Hou ◽  
Hong-Yang Liu ◽  
Rui Wang ◽  
...  

Breast cancer is the most common cancer observed in adult females, worldwide. Due to the heterogeneity and varied molecular subtypes of breast cancer, the molecular mechanisms underlying carcinogenesis in different subtypes of breast cancer are distinct. Recently, long noncoding RNAs (lncRNAs) have been shown to be oncogenic or play important roles in cancer suppression and are used as biomarkers for diagnosis and therapy. In this study, we identified 134 lncRNAs and 6,414 coding genes were differentially expressed in triple-negative (TN), human epidermal growth factor receptor 2- (HER2-) positive, luminal A-positive, and luminal B-positive breast cancer. Of these, 37 lncRNAs were found to be dysregulated in all four subtypes of breast cancers. Subtypes of breast cancer special modules and lncRNA-mRNA interaction networks were constructed through weighted gene coexpression network analysis (WGCNA). Survival analysis of another public datasets was used to verify the identified lncRNAs exhibiting potential indicative roles in TN prognosis. Results from heat map analysis of the identified lncRNAs revealed that five blocks were significantly displayed. High expressions of lncRNAs, including LINC00911, CSMD2-AS1, LINC01192, SNHG19, DSCAM-AS1, PCAT4, ACVR28-AS1, and CNTFR-AS1, and low expressions of THAP9-AS1, MALAT1, TUG1, CAHM, FAM2011, NNT-AS1, COX10-AS1, and RPARP-AS1 were associated with low survival possibility in TN breast cancers. This study provides novel lncRNAs as potential biomarkers for the therapeutic and prognostic classification of different breast cancer subtypes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Parnaz Merikhian ◽  
Mohammad Reza Eisavand ◽  
Leila Farahmand

AbstractTriple-negative breast cancer (TNBC) is not as prevalent as hormone receptor or HER2-positive breast cancers and all receptor tests come back negative. More importantly, the heterogeneity and complexity of the TNBC on the molecular and clinical levels have limited the successful development of novel therapeutic strategies and led to intrinsic or developed resistance to chemotherapies and new therapeutic agents. Studies have demonstrated deregulation of Wnt/β-catenin signaling in tumorigenesis which plays decisive roles at the low survival rate of patients and facilitates resistance to currently existing therapies. This review summarizes mechanisms of Wnt/β-catenin signaling for resistance development in TNBC, the complex interaction between Wnt/β-catenin signaling, and the transactivated receptor tyrosine kinase (RTK) signaling pathways, lymphocytic infiltration, epithelial-mesenchymal transition (EMT), and induction of metastasis. Such associations and how these pathways interact in the development and progression of cancer have led to the careful analysis and development of new and effective combination therapies without generating significant toxicity and resistance.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2506
Author(s):  
Mark van Barele ◽  
Bernadette A. M. Heemskerk-Gerritsen ◽  
Yvonne V. Louwers ◽  
Mijntje B. Vastbinder ◽  
John W. M. Martens ◽  
...  

Triple-negative breast cancers (TNBC) occur more frequently in younger women and do not express estrogen receptor (ER) nor progesterone receptor (PR), and are therefore often considered hormone-insensitive. Treatment of premenopausal TNBC patients almost always includes chemotherapy, which may lead to premature ovarian insufficiency (POI) and can severely impact quality of life. Hormone replacement therapy (HRT) is contraindicated for patients with a history of hormone-sensitive breast cancer, but the data on safety for TNBC patients is inconclusive, with a few randomized trials showing increased risk-ratios with wide confidence intervals for recurrence after HRT. Here, we review the literature on alternative pathways from the classical ER/PR. We find that for both estrogens and progestogens, potential alternatives exist for exerting their effects on TNBC, ranging from receptor conversion, to alternative receptors capable of binding estrogens, as well as paracrine pathways, such as RANK/RANKL, which can cause progestogens to indirectly stimulate growth and metastasis of TNBC. Finally, HRT may also influence other hormones, such as androgens, and their effects on TNBCs expressing androgen receptors (AR). Concluding, the assumption that TNBC is completely hormone-insensitive is incorrect. However, the direction of the effects of the alternative pathways is not always clear, and will need to be investigated further.


2020 ◽  
Author(s):  
Markus Kuksis ◽  
Yizhuo Gao ◽  
William Tran ◽  
Christianne Hoey ◽  
Alex Kiss ◽  
...  

Abstract Background Patients with metastatic breast cancer (MBC) are living longer, but development of brain metastases often limits their survival. We conducted a systematic review and meta-analysis to determine the incidence of brain metastases in this patient population. Methods Articles published from January 2000 to January 2020 were compiled from four databases using search terms related to: breast cancer, brain metastasis, and incidence. The overall and per patient-year incidence of brain metastases were extracted from studies including patients with HER2+, triple negative, and hormone receptor (HR)+/HER2- MBC; pooled overall estimates for incidence were calculated using random effects models. Results 937 articles were compiled, and 25 were included in the meta-analysis. Incidence of brain metastases in patients with HER2+ MBC, triple negative MBC, and HR+/HER2- MBC was reported in 17, 6, and 4 studies, respectively. The pooled cumulative incidence of brain metastases was 31% for the HER2+ subgroup (median follow-up: 30.7 months, IQR: 24.0 – 34.0), 32% for the triple negative subgroup (median follow-up: 32.8 months, IQR: 18.5 – 40.6), and 15% among patients with HR+/HER2- MBC (median follow-up: 33.0 months, IQR: 31.9 – 36.2). The corresponding incidences per patient-year were 0.13 (95% CI: 0.10 – 0.16) for the HER2+ subgroup, 0.13 (95%CI: 0.09 – 0.20) for the triple negative subgroup, and only 0.05 (95%CI: 0.03 – 0.08) for patients with HR+/HER2- MBC. Conclusion There is high incidence of brain metastases among patients with HER2+ and triple negative MBC. The utility of a brain metastases screening program warrants investigation in these populations.


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
C Zabkiewicz ◽  
L Ye ◽  
R Hargest

Abstract Introduction HER2 over-expression denotes poor prognosis in breast cancers.Bone morphogenetic protein(BMP) signalling is known to interact with EGF signalling, co-regulating breast cancer progression.BMP antagonist Gremlin-1 may influence breast cancer disease progression, but this remains unexplored in HER2 positive breast cancers. Method GREM1 and HER2 expression, and clinical outcomes were examined in clinical cohorts.GREM1 overexpression or pEF control plasmid were transduced into BT474 HER2+breast cancer cells. In vitro function tests using BT474 pEF and BT474GREM1cells include 2D/3D growth, migration, and expression of epithelial to mesenchymal transition(EMT)markers. Signalling cascades were examined in BT474 treated with RhGremlin-1. In vivo, BALB/c nude mice underwent either mammary injection or intra-cardiac injection of BT474pEF or BT474GREM1 cells and disease burden assessed. Result GREM1 expression correlates with HER2 in breast tumours(p=0.03) and is higher in metastatic HER2 positive cancers (p = 0.04). HER2 positive patients with high GREM1 have poor survival(p = 0.0002). BT474GREM1cells have up-regulated markers of EMT compared to control. BT474 RhGremlin-1 treated cells have active AKT pathway signalling, independent of BMP signalling. In vitro,  BT474GREM1cells significantly proliferate and migrate compared to control(p<0.05 and p < 0.001).This is confirmed in vivo,  BT474GREM1 mice grew significantly larger mammary tumours(p<0.05) and had more PETCT metastatic hotspots. Conclusion Gremlin-1 is correlated with poor outcomes in HER2 patients and promotes breast cancer cellular growth, migration and metastasis.Gremlin-1 is a novel area of research with potential as a prognostic biomarker and therapeutic target for personalised, effective, breast cancer outcomes. Take-home message BMP antagonists are gaining interest for their potential in breast cancer prognosis and therapeutics.This novel area of research shows BMP antagonist Gremlin-1 is of importance in HER2 positive breast cancers. DRAGONS DEN


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. E. Anselmino ◽  
M. V. Baglioni ◽  
F. Malizia ◽  
N. Cesatti Laluce ◽  
C. Borini Etichetti ◽  
...  

AbstractDrug repositioning refers to new uses for existing drugs outside the scope of the original medical indications. This approach fastens the process of drug development allowing finding effective drugs with reduced side effects and lower costs. Colorectal cancer (CRC) is often diagnosed at advanced stages, when the probability of chemotherapy resistance is higher. Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer, highly metastatic and difficult to treat. For both tumor types, available treatments are generally associated to severe side effects. In our work, we explored the effect of combining metformin and propranolol, two repositioned drugs, in both tumor types. We demonstrate that treatment affects viability, epithelial-mesenchymal transition and migratory potential of CRC cells as we described before for TNBC. We show that combined treatment affects different steps leading to metastasis in TNBC. Moreover, combined treatment is also effective preventing the development of 5-FU resistant CRC. Our data suggest that combination of metformin and propranolol could be useful as a putative adjuvant treatment for both TNBC and CRC and an alternative for chemo-resistant CRC, providing a low-cost alternative therapy without associated toxicity.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Ayca Gucalp ◽  
Tiffany A. Traina

Triple-negative breast cancer (TNBC), a subtype distinguished by negative immunohistochemical assays for expression of the estrogen and progesterone receptors (ER/PR) and human epidermal growth factor receptor-2(HER2) represents 15% of all breast cancers. Patients with TNBC generally experience a more aggressive clinical course with increased risk of disease progression and poorer overall survival. Furthermore, this subtype accounts for a disproportionate number of disease-related mortality in part due to its aggressive natural history and our lack of effective targeted agents beyond conventional cytotoxic chemotherapy. In this paper, we will review the epidemiology, risk factors, prognosis, and the molecular and clinicopathologic features that distinguish TNBC from other subtypes of breast cancer. In addition, we will examine the available data for the use of cytotoxic chemotherapy in the treatment of TNBC in both the neoadjuvant and adjuvant setting and explore the ongoing development of newer targeted agents.


2010 ◽  
Vol 28 (18) ◽  
pp. 2966-2973 ◽  
Author(s):  
Marco Colleoni ◽  
Bernard F. Cole ◽  
Giuseppe Viale ◽  
Meredith M. Regan ◽  
Karen N. Price ◽  
...  

Purpose Retrospective studies suggest that primary breast cancers lacking estrogen receptor (ER) and progesterone receptor (PR) and not overexpressing human epidermal growth factor receptor 2 (HER2; triple-negative tumors) are particularly sensitive to DNA-damaging chemotherapy with alkylating agents. Patients and Methods Patients enrolled in International Breast Cancer Study Group Trials VIII and IX with node-negative, operable breast cancer and centrally assessed ER, PR, and HER2 were included (n = 2,257). The trials compared three or six courses of adjuvant classical cyclophosphamide, methotrexate, and fluorouracil (CMF) with or without endocrine therapy versus endocrine therapy alone. We explored patterns of recurrence by treatment according to three immunohistochemically defined tumor subtypes: triple negative, HER2 positive and endocrine receptor absent, and endocrine receptor present. Results Patients with triple-negative tumors (303 patients; 13%) were significantly more likely to have tumors > 2 cm and grade 3 compared with those in the HER2-positive, endocrine receptor–absent, and endocrine receptor–present subtypes. No clear chemotherapy benefit was observed in endocrine receptor–present disease (hazard ratio [HR], 0.90; 95% CI, 0.74 to 1.11). A statistically significantly greater benefit for chemotherapy versus no chemotherapy was observed in triple-negative breast cancer (HR, 0.46; 95% CI, 0.29 to 0.73; interaction P = .009 v endocrine receptor–present disease). The magnitude of the chemotherapy effect was lower in HER2-positive endocrine receptor–absent disease (HR, 0.58; 95% CI, 0.29 to 1.17; interaction P = .24 v endocrine receptor–present disease). Conclusion The magnitude of benefit of CMF chemotherapy is largest in patients with triple-negative, node-negative breast cancer.


2018 ◽  
Vol 115 (51) ◽  
pp. E11978-E11987 ◽  
Author(s):  
Ryoichi Matsunuma ◽  
Doug W. Chan ◽  
Beom-Jun Kim ◽  
Purba Singh ◽  
Airi Han ◽  
...  

A Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomic analysis prioritized dihydropyrimidinase-like-3 (DPYSL3) as a multilevel (RNA/protein/phosphoprotein) expression outlier specific to the claudin-low (CLOW) subset of triple-negative breast cancers. A PubMed informatics tool indicated a paucity of data in the context of breast cancer, which further prioritized DPYSL3 for study. DPYSL3 knockdown in DPYSL3-positive (DPYSL3+) CLOW cell lines demonstrated reduced proliferation, yet enhanced motility and increased expression of epithelial-to-mesenchymal transition (EMT) markers, suggesting that DPYSL3 is a multifunctional signaling modulator. Slower proliferation in DPYSL3-negative (DPYSL3−) CLOW cells was associated with accumulation of multinucleated cells, indicating a mitotic defect that was associated with a collapse of the vimentin microfilament network and increased vimentin phosphorylation. DPYSL3 also suppressed the expression of EMT regulators SNAIL and TWIST and opposed p21 activated kinase 2 (PAK2)-dependent migration. However, these EMT regulators in turn induce DPYSL3 expression, suggesting that DPYSL3 participates in negative feedback on EMT. In conclusion, DPYSL3 expression identifies CLOW tumors that will be sensitive to approaches that promote vimentin phosphorylation during mitosis and inhibitors of PAK signaling during migration and EMT.


2014 ◽  
Vol 8 ◽  
pp. BCBCR.S9453 ◽  
Author(s):  
Adam M. Brufsky

Human epidermal growth factor receptor-2 (HER2) is overexpressed in up to 30% of breast cancers; HER2 overexpression is indicative of poor prognosis. Trastuzumab, an anti-HER2 monoclonal antibody, has led to improved outcomes in patients with HER2-positive breast cancer, including improved overall survival in adjuvant and first-line settings. However, a large proportion of patients with breast cancer have intrinsic resistance to HER2-targeted therapies, and nearly all become resistant to therapy after initial response. Elucidation of underlying mechanisms contributing to HER2 resistance has led to development of novel therapeutic strategies, including those targeting HER2 and downstream pathways, heat shock protein 90, telomerase, and vascular endothelial growth factor inhibitors. Numerous clinical trials are ongoing or completed, including phase 3 data for the mammalian target of rapamycin inhibitor everolimus in patients with HER2-resistant breast cancer. This review considers the molecular mechanisms associated with HER2 resistance and evaluates the evidence for use of evolving strategies in patients with HER2-resistant breast cancer.


Sign in / Sign up

Export Citation Format

Share Document