scholarly journals Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Enable a Stable Non-Spilling Loading of T Cells and Their Magnetic Accumulation

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4143
Author(s):  
Philipp Boosz ◽  
Felix Pfister ◽  
Rene Stein ◽  
Bernhard Friedrich ◽  
Lars Fester ◽  
...  

T cell infiltration into a tumor is associated with a good clinical prognosis of the patient and adoptive T cell therapy can increase anti-tumor immune responses. However, immune cells are often excluded from tumor infiltration and can lack activation due to the immune-suppressive tumor microenvironment. To make T cells controllable by external forces, we loaded primary human CD3+ T cells with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONs). Since the efficacy of magnetic targeting depends on the amount of SPION loading, we investigated how experimental conditions influence nanoparticle uptake and viability of cells. We found that loading in the presence of serum improved both the colloidal stability of SPIONs and viability of T cells, whereas stimulation with CD3/CD28/CD2 and IL-2 did not influence nanoparticle uptake. Furthermore, SPION loading did not impair cytokine secretion after polyclonal stimulation. We finally achieved 1.4 pg iron loading per cell, which was both located intracellularly in vesicles and bound to the plasma membrane. Importantly, nanoparticles did not spill over to non-loaded cells. Since SPION-loading enabled efficient magnetic accumulation of T cells in vitro under dynamic conditions, we conclude that this might be a good starting point for the investigation of in vivo delivery of immune cells.

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 342 ◽  
Author(s):  
Marina Mühlberger ◽  
Harald Unterweger ◽  
Julia Band ◽  
Christian Lehmann ◽  
Lukas Heger ◽  
...  

For the conversion of immunologically cold tumors, characterized by a low T cell infiltration, into hot tumors, it is necessary to enrich T cells in the tumor area. One possibility is the use of magnetic fields to direct T cells into the tumor. For this purpose, primary T cells that were freshly isolated from human whole blood were loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate). Cell toxicity and particle uptake were investigated by flow cytometry and atomic emission spectroscopy. The optimum loading of the T cells without any major effect on their viability was achieved with a particle concentration of 75 µg Fe/mL and a loading period of 24 h. The cellular content of SPIONCitrate was sufficient to attract these T cells with a magnet which was monitored by live-cell imaging. The functionality of the T cells was only slightly influenced by SPIONCitrate, as demonstrated by in vitro stimulation assays. The proliferation rate as well as the expression of co-stimulatory and inhibitory surface molecules (programmed cell death 1 (PD-1), lymphocyte activation gene 3 (LAG-3), T cell immunoglobulin and mucin domain containing 3 (Tim-3), C-C motif chemokine receptor 7 (CCR7), CD25, CD45RO, CD69) was investigated and found to be unchanged. Our results presented here demonstrate the feasibility of loading primary human T lymphocytes with superparamagnetic iron oxide nanoparticles without influencing their viability and functionality while achieving sufficient magnetizability for magnetically controlled targeting. Thus, the results provide a strong fundament for the transfer to tumor models and ultimately for new immunotherapeutic approaches for cancer treatment.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2020 ◽  
Vol 10 (2) ◽  
pp. 166-174
Author(s):  
Mehdi Khoshneviszadeh ◽  
Sarah Zargarnezhad ◽  
Younes Ghasemi ◽  
Ahmad Gholami

Background: Magnetic cell immobilization has been introduced as a novel, facile and highly efficient approach for cell separation. A stable attachment between bacterial cell wall with superparamagnetic iron oxide nanoparticles (SPIONs) would enable the microorganisms to be affected by an outer magnetic field. At high concentrations, SPIONs produce reactive oxygen species in cytoplasm, which induce apoptosis or necrosis in microorganisms. Choosing a proper surface coating could cover the defects and increase the efficiency. Methods: In this study, asparagine, APTES, lipo-amino acid and PEG surface modified SPIONs was synthesized by co-precipitation method and characterized by FTIR, TEM, VSM, XRD, DLS techniques. Then, their protective effects against four Gram-positive and Gram-negative bacterial strains including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were examined through microdilution broth and compared to naked SPION. Results: The evaluation of characterization results showed that functionalization of magnetic nanoparticles could change their MS value, size and surface charges. Also, the microbial analysis revealed that lipo-amino acid coated magnetic nanoparticles has the least adverse effect on microbial strain among tested SPIONs. Conclusion: This study showed lipo-amino acid could be considered as the most protective and even promotive surface coating, which is explained by its optimizing effect on cell penetration and negligible reductive effects on magnetic properties of SPIONs. lipo-amino acid coated magnetic nanoparticles could be used in microbial biotechnology and industrial microbiology.


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14203-14212
Author(s):  
Luccas Lossano Name ◽  
Sergio Hiroshi Toma ◽  
Helton Pereira Nogueira ◽  
Luis Humberto Avanzi ◽  
Rafael dos Santos Pereira ◽  
...  

Conversion efficiency as high as 80–100% and 50% selectivity for camphene and limonene was achieved with low production of polymeric byproducts (18–28%), using a new magnetically recyclable catalyst – SPION-Nb30@HPW.


Heliyon ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. e01955 ◽  
Author(s):  
Sharmistha Mohapatra ◽  
Mohammed Asfer ◽  
Mohammed Anwar ◽  
Kalicharan Sharma ◽  
Mymoona Akhter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document