scholarly journals A Nuclear-Directed Ribonuclease Variant Targets Cancer Stem Cells and Inhibits Migration and Invasion of Breast Cancer Cells

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4350
Author(s):  
Jessica Castro ◽  
Giusy Tornillo ◽  
Gerardo Ceada ◽  
Beatriz Ramos-Neble ◽  
Marlon Bravo ◽  
...  

Despite the significant advances in cancer research made in recent years, this disease remains one of the leading causes of death worldwide. In part, this is due to the fact that after therapy, a subpopulation of self-renewing tumor cells can survive and promote cancer relapse, resistance to therapies and metastasis. Targeting these cancer stem cells (CSCs) is therefore essential to improve the clinical outcome of cancer patients. In this sense, multi-targeted drugs may be promising agents targeting CSC-associated multifocal effects. We have previously constructed different human pancreatic ribonuclease (RNase) variants that are cytotoxic for tumor cells due to a non-classical nuclear localization signal introduced in their sequence. These cytotoxic RNases affect the expression of multiple genes involved in deregulated metabolic and signaling pathways in cancer cells and are highly cytotoxic for multidrug-resistant tumor cell lines. Here, we show that these cytotoxic nuclear-directed RNases are highly selective for tumor cell lines grown in 3D, inhibit CSCs’ development and diminish the self-renewal capacity of the CSCs population. Moreover, these human RNase variants reduce the migration and invasiveness of highly invasive breast cancer cells and downregulate N-cadherin expression.

2021 ◽  
Author(s):  
Ningwei Fu ◽  
Ning Fan ◽  
Wenchao Luo ◽  
Lijia Lv ◽  
Jing Li ◽  
...  

Abstract Purpose: TFEB is a key regulator of autophagy-lysosomal biogenesis pathways, while its dysregulation is highly prevalent in various human cancers, but the specific contribution to breast cancer remains poorly understood. The main purpose of this study is to explore the role of TFEB in breast cancer proliferation, metastasis and maintaining breast cancer stem cells (BCSCs) traits, thus uncovering its underlying mechanism.Methods: Bioinformatics, western blotting and immunohistochemical staining were applied to analyze the expression of TFEB in breast cancer. Stable down-regulation TFEB cells were established in MCF-7 and MDA-MB-231 breast cancer cell lines. MTT, clone formation, wound healing, transwell and 3D tumor invasion assays were used to evaluate the proliferation, migration and invasion ability of breast cancer cells. Mammosphere formation, immunocytochemical (ICC) staining were used to detect the effect of down-regulating TFEB on breast cancer stem cells. Results: we demonstrated that higher expression of TFEB was found in breast cancer. TFEB depletion had inhibitory effects on cellular proliferation, migration and invasion of breast cancer cells. Moreover, knockdown TFEB decreased mammosphere formation ability of BCSCs and expression of cancer stem cell markers. Autophagy-lysosomal related proteins were decreased by down regulation of TFEB. Conclusion: we uncovered a critical role of TFEB in breast cancer proliferation and metastasis, and BCSCs self-renewal and stemness. The underlying mechanisms involve in maintaining BCSCs traits, and dysregulating lysosome functions.


2018 ◽  
Vol 48 (5) ◽  
pp. 2205-2218 ◽  
Author(s):  
Chun-Wen Cheng ◽  
Jyh-Cherng Yu ◽  
Yi-Hsien Hsieh ◽  
Wen-Ling Liao ◽  
Jia-Ching Shieh ◽  
...  

Background /Aims: Recent studies of microRNA (miRNA) involvement in tumorigenesis have indicated the critical role of these non-coding small RNAs in malignant transformation, but the prognostic role, if any, of miRNAs in breast cancer remains undetermined. Therefore, we assessed the prognostic significance of microRNA-9 (miR-9) and miR-221 in breast cancer toward the goal of understanding the contribution(s) of these miRNAs to cancer cell stemness. Methods: The level of each of miR-9 and miR-221 in 206 paired laser capture microdissected tumor cells and non-tumor cells was determined by quantitative reverse transcription-PCR (qRT-PCR). The relationship between the miRNA signature and clinicopathological data and prognosis of breast cancer was assessed. Identification of a stem cell-enriched side population was achieved with fluorescence-activated cell sorting and a sphere-forming assay. Wound healing, Boyden chamber assays, and western blotting were used to study the contribution of each miRNA to tumor cell migration and invasion. Results: We found that induction of miR-9 and miR-221 mimics conferred side-population cells to form spheroidal tumor colonies in suspension culture that maintained the mesenchymal stem-cell potential in non-invasive MCF-7 breast cancer cells. In contrast, knockdown of both miR-9 and miR-221 in invasive MDA-MB-231 breast cancer cells dramatically decreased the number of side-population colonies with stem cell-like potency, which reduced the capacity for tumor-cell renewal, invasion, and migration. Clinically, the mean proportion of miR-9- or miR-221-overexpressing cells was significantly greater in tumor cells compared with non-tumor cells (P < 0.05). Increased levels of miR-9 and miR-221 in breast tissue portended a significantly elevated risk of progression to malignancy with respect to larger tumor size, poor differentiation, late-stage evolution, lymph-node metastasis (P < 0.05), and lower overall survival (Ptrend = 0.017; eight-year follow-up). Conclusion: Our findings provide strong evidence that miR-9 and miR-221 can enhance the generation of cancer stem cells to yield an invasive phenotype and that overexpression of these miRNAs predicts a poor outcome for breast cancer patients.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Huiquan Yang ◽  
Yuyu Cao ◽  
Dongdong Li ◽  
Fan Li ◽  
Jing Ma ◽  
...  

Aim: This study aimed to construct AS1411 and EpDT3-conjugated PEGylated silver nanotriangles (AENTs) and assess their ability to target breast cancer and cancer stem cells, as well as the anti tumor and anti metastatic effects of AENTs-mediated photothermal therapy. Materials & methods: AENTs were constructed and characterized. The targeting properties, as well as anti tumor and anti metastatic activities, were evaluated in MDA-MB-231 breast cancer cells, cancer stem cells and breast cancer-bearing mice. Results: AENTs displayed excellent targeting property to breast cancer cells and cancer stem cells. AENTs-mediated photothermal therapy greatly inhibited (>45%) the migration and invasion of breast cancer cells, as well as tumor growth and lung metastasis in the mice. Conclusion: AENTs-mediated photothermal therapy might be an effective strategy for the treatment of breast cancer.


2021 ◽  
Vol 15 ◽  
pp. 117822342110349
Author(s):  
Namita Kundu ◽  
Xinrong Ma ◽  
Stephen Hoag ◽  
Fang Wang ◽  
Ahmed Ibrahim ◽  
...  

The taro plant, Colocasia esculenta, contains bioactive proteins with potential as cancer therapeutics. Several groups have reported anti-cancer activity in vitro and in vivo of taro-derived extracts (TEs). We reported that TE inhibits metastasis in a syngeneic murine model of Triple-Negative Breast Cancer (TNBC). Purpose: We sought to confirm our earlier studies in additional models and to identify novel mechanisms by which efficacy is achieved. Methods: We employed a panel of murine and human breast and ovarian cancer cell lines to determine the effect of TE on tumor cell viability, migration, and the ability to support cancer stem cells. Two syngeneic models of TNBC were employed to confirm our earlier report that TE potently inhibits metastasis. Cancer stem cell assays were employed to determine the ability of TE to inhibit tumorsphere-forming ability and to inhibit aldehyde dehydrogenase activity. To determine if host immunity contributes to the mechanism of metastasis inhibition, efficacy was assessed in immune-compromised mice. Results: We demonstrate that viability of some, but not all cell lines is inhibited by TE. Likewise, tumor cell migration is inhibited by TE. Using 2 immune competent, syngeneic models of TNBC, we confirm our earlier findings that tumor metastasis is potently inhibited by TE. We also demonstrate, for the first time, that TE directly inhibits breast cancer stem cells. Administration of TE to mice elicits expansion of several spleen cell populations but it was not known if host immune cells contribute to the mechanism by which TE inhibits tumor cell dissemination. In novel findings, we now show that the ability of TE to inhibit metastasis relies on immune T-cell-dependent, but not B cell or Natural Killer (NK)-cell-dependent mechanisms. Thus, both tumor cell-autonomous and host immune factors contribute to the mechanisms underlying TE efficacy. Our long-term goal is to evaluate TE efficacy in clinical trials. Most of our past studies as well as many of the results reported in this report were carried out using an isolation protocol described earlier (TE). In preparation for a near future clinical trial, we have now developed a strategy to isolate an enriched taro fraction, TE-method 2, (TE-M2) as well as a more purified subfraction (TE-M2F1) which can be scaled up under Good Manufacturing Practice (GMP) conditions for evaluation in human subjects. We demonstrate that TE-M2 and TE-M2F1 retain the anti-metastatic properties of TE. Conclusions: These studies provide further support for the continued examination of biologically active components of Colocasia esculenta as potential new therapeutic entities and identify a method to isolate sufficient quantities under GMP conditions to conduct early phase clinical studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


2021 ◽  
Author(s):  
Patricia Cámara-Sánchez ◽  
Zamira V. Díaz-Riascos ◽  
Natalia García-Aranda ◽  
Petra Gener ◽  
Joaquin Seras-Franzoso ◽  
...  

Abstract Background Cancer maintenance, metastatic dissemination and drug-resistance are sustained by cancer stem cells (CSCs). Triple negative breast cancer (TNBC) is the breast cancer subtype with the highest numbers of CSCs and poorest prognosis. Here, we aimed to identify potential drugs targeting CSCs to be further employed in combination with standard chemotherapy in TNBC treatment. Methods The anti-CSC efficacy of up to 17 small-drugs was tested in TNBC cell lines using cell viability assays on differentiated cancer cells and CSCs. Then, the effect of 2 selected drugs (8-quinolinol -8Q- and niclosamide -NCS-) in the cancer stemness hallmarks were evaluated using mammosphere growth, cell invasion, migration and anchorage-independent growth assays. Changes in the expression of stemness genes upon 8Q or NCS treatment were also evaluated. Moreover, the potential synergism of 8Q and NCS with PTX on the CSC proliferation and on stemness-related signaling pathways was evaluated using TNBC cell lines, CSC-reporter sublines, and CSCenriched mammospheres. Finally, the efficacy of the NCS in combination with PTX was analyzed in vivo using an orthotopic mice model of MDA-MB-231 cells. Results Among all tested drug candidates, 8Q and NCS showed remarkable specific anti-CSC activity in terms of CSC viability, migration, invasion and anchorage independent growth reduction in vitro. Moreover, specific 8Q/PTX and NCS/PTX ratios at which both drugs displayed a synergistic effect in different TNBC cell lines were identified. The solely use of PTX increased the relative presence of CSCs in TNBC cells, whereas the combination with 8Q and NCS counteracted this pro-CSC activity of PTX whilst significantly reducing cell viability. In vivo, the combination of NCS with PTX reduced tumor growth, and limited the dissemination of the disease by reducing the circulating tumor cells and the incidence of lung metastasis. Conclusions The combination of 8Q and NCS with PTX at established ratios inhibits both, the proliferation of differentiated cancer cells and the viability of CSCs, opening a way to more efficacious TNBC treatments.


2019 ◽  
Vol 13 ◽  
pp. 117822341987362 ◽  
Author(s):  
Namita Kundu ◽  
Xinrong Ma ◽  
Regine Brox ◽  
Xiaoxuan Fan ◽  
Tyler Kochel ◽  
...  

We are seeking to identify molecular targets that are relevant to breast cancer cells with stem-like properties. There is growing evidence that cancer stem cells (CSCs) are supported by inflammatory mediators expressed in the tumor microenvironment. The chemokine receptor CXCR3 binds the interferon-γ-inducible, ELR-negative CXC chemokines CXCL9, CXCL10, and CXCL11 and malignant cells have co-opted this receptor to promote tumor cell migration and invasion. There are 2 major isoforms of CXCR3: CXCR3A and CXCR3B. The latter is generated from alternative splicing and results in a protein with a longer N-terminal domain. CXCR3 isoform A is generally considered to play a major role in tumor metastasis. When the entire tumor cell population is examined, CXCR3 isoform B is usually detected at much lower levels than CXCR3A and for this, and other reasons, was not considered to drive tumor progression. We have shown that CXCR3B is significantly upregulated in the subpopulation of breast CSCs in comparison with the bulk tumor cell population in 3 independent breast cancer cell lines (MDA-MB-231, SUM159, and T47D). Modulation of CXCR3B levels by knock in strategies increases CSC populations identified by aldehyde dehydrogenase activity or CD44+CD24− phenotype as well as tumorsphere-forming capacity. The reverse is seen when CXCR3B is gene-silenced. CXCL11 and CXCL10 directly induce CSC. We also report that novel CXCR3 allosteric modulators BD064 and BD103 prevent the induction of CSCs. BD103 inhibited experimental metastasis. This protective effect is associated with the reversal of CXCR3 ligand-mediated activation of STAT3, ERK1/2, CREB, and NOTCH1 pathways. We propose that CXCR3B, expressed on CSC, should be explored further as a novel therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document