scholarly journals An Extract of Taro (Colocasia esculenta) Mediates Potent Inhibitory Actions on Metastatic and Cancer Stem Cells by Tumor Cell-Autonomous and Immune-Dependent Mechanisms

2021 ◽  
Vol 15 ◽  
pp. 117822342110349
Author(s):  
Namita Kundu ◽  
Xinrong Ma ◽  
Stephen Hoag ◽  
Fang Wang ◽  
Ahmed Ibrahim ◽  
...  

The taro plant, Colocasia esculenta, contains bioactive proteins with potential as cancer therapeutics. Several groups have reported anti-cancer activity in vitro and in vivo of taro-derived extracts (TEs). We reported that TE inhibits metastasis in a syngeneic murine model of Triple-Negative Breast Cancer (TNBC). Purpose: We sought to confirm our earlier studies in additional models and to identify novel mechanisms by which efficacy is achieved. Methods: We employed a panel of murine and human breast and ovarian cancer cell lines to determine the effect of TE on tumor cell viability, migration, and the ability to support cancer stem cells. Two syngeneic models of TNBC were employed to confirm our earlier report that TE potently inhibits metastasis. Cancer stem cell assays were employed to determine the ability of TE to inhibit tumorsphere-forming ability and to inhibit aldehyde dehydrogenase activity. To determine if host immunity contributes to the mechanism of metastasis inhibition, efficacy was assessed in immune-compromised mice. Results: We demonstrate that viability of some, but not all cell lines is inhibited by TE. Likewise, tumor cell migration is inhibited by TE. Using 2 immune competent, syngeneic models of TNBC, we confirm our earlier findings that tumor metastasis is potently inhibited by TE. We also demonstrate, for the first time, that TE directly inhibits breast cancer stem cells. Administration of TE to mice elicits expansion of several spleen cell populations but it was not known if host immune cells contribute to the mechanism by which TE inhibits tumor cell dissemination. In novel findings, we now show that the ability of TE to inhibit metastasis relies on immune T-cell-dependent, but not B cell or Natural Killer (NK)-cell-dependent mechanisms. Thus, both tumor cell-autonomous and host immune factors contribute to the mechanisms underlying TE efficacy. Our long-term goal is to evaluate TE efficacy in clinical trials. Most of our past studies as well as many of the results reported in this report were carried out using an isolation protocol described earlier (TE). In preparation for a near future clinical trial, we have now developed a strategy to isolate an enriched taro fraction, TE-method 2, (TE-M2) as well as a more purified subfraction (TE-M2F1) which can be scaled up under Good Manufacturing Practice (GMP) conditions for evaluation in human subjects. We demonstrate that TE-M2 and TE-M2F1 retain the anti-metastatic properties of TE. Conclusions: These studies provide further support for the continued examination of biologically active components of Colocasia esculenta as potential new therapeutic entities and identify a method to isolate sufficient quantities under GMP conditions to conduct early phase clinical studies.

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4350
Author(s):  
Jessica Castro ◽  
Giusy Tornillo ◽  
Gerardo Ceada ◽  
Beatriz Ramos-Neble ◽  
Marlon Bravo ◽  
...  

Despite the significant advances in cancer research made in recent years, this disease remains one of the leading causes of death worldwide. In part, this is due to the fact that after therapy, a subpopulation of self-renewing tumor cells can survive and promote cancer relapse, resistance to therapies and metastasis. Targeting these cancer stem cells (CSCs) is therefore essential to improve the clinical outcome of cancer patients. In this sense, multi-targeted drugs may be promising agents targeting CSC-associated multifocal effects. We have previously constructed different human pancreatic ribonuclease (RNase) variants that are cytotoxic for tumor cells due to a non-classical nuclear localization signal introduced in their sequence. These cytotoxic RNases affect the expression of multiple genes involved in deregulated metabolic and signaling pathways in cancer cells and are highly cytotoxic for multidrug-resistant tumor cell lines. Here, we show that these cytotoxic nuclear-directed RNases are highly selective for tumor cell lines grown in 3D, inhibit CSCs’ development and diminish the self-renewal capacity of the CSCs population. Moreover, these human RNase variants reduce the migration and invasiveness of highly invasive breast cancer cells and downregulate N-cadherin expression.


2021 ◽  
Author(s):  
Patricia Cámara-Sánchez ◽  
Zamira V. Díaz-Riascos ◽  
Natalia García-Aranda ◽  
Petra Gener ◽  
Joaquin Seras-Franzoso ◽  
...  

Abstract Background Cancer maintenance, metastatic dissemination and drug-resistance are sustained by cancer stem cells (CSCs). Triple negative breast cancer (TNBC) is the breast cancer subtype with the highest numbers of CSCs and poorest prognosis. Here, we aimed to identify potential drugs targeting CSCs to be further employed in combination with standard chemotherapy in TNBC treatment. Methods The anti-CSC efficacy of up to 17 small-drugs was tested in TNBC cell lines using cell viability assays on differentiated cancer cells and CSCs. Then, the effect of 2 selected drugs (8-quinolinol -8Q- and niclosamide -NCS-) in the cancer stemness hallmarks were evaluated using mammosphere growth, cell invasion, migration and anchorage-independent growth assays. Changes in the expression of stemness genes upon 8Q or NCS treatment were also evaluated. Moreover, the potential synergism of 8Q and NCS with PTX on the CSC proliferation and on stemness-related signaling pathways was evaluated using TNBC cell lines, CSC-reporter sublines, and CSCenriched mammospheres. Finally, the efficacy of the NCS in combination with PTX was analyzed in vivo using an orthotopic mice model of MDA-MB-231 cells. Results Among all tested drug candidates, 8Q and NCS showed remarkable specific anti-CSC activity in terms of CSC viability, migration, invasion and anchorage independent growth reduction in vitro. Moreover, specific 8Q/PTX and NCS/PTX ratios at which both drugs displayed a synergistic effect in different TNBC cell lines were identified. The solely use of PTX increased the relative presence of CSCs in TNBC cells, whereas the combination with 8Q and NCS counteracted this pro-CSC activity of PTX whilst significantly reducing cell viability. In vivo, the combination of NCS with PTX reduced tumor growth, and limited the dissemination of the disease by reducing the circulating tumor cells and the incidence of lung metastasis. Conclusions The combination of 8Q and NCS with PTX at established ratios inhibits both, the proliferation of differentiated cancer cells and the viability of CSCs, opening a way to more efficacious TNBC treatments.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jeong Yoon Han ◽  
Yu Kyeong Han ◽  
Ga-Young Park ◽  
Sung Dae Kim ◽  
Chang Geun Lee

2019 ◽  
Vol 13 ◽  
pp. 117822341987362 ◽  
Author(s):  
Namita Kundu ◽  
Xinrong Ma ◽  
Regine Brox ◽  
Xiaoxuan Fan ◽  
Tyler Kochel ◽  
...  

We are seeking to identify molecular targets that are relevant to breast cancer cells with stem-like properties. There is growing evidence that cancer stem cells (CSCs) are supported by inflammatory mediators expressed in the tumor microenvironment. The chemokine receptor CXCR3 binds the interferon-γ-inducible, ELR-negative CXC chemokines CXCL9, CXCL10, and CXCL11 and malignant cells have co-opted this receptor to promote tumor cell migration and invasion. There are 2 major isoforms of CXCR3: CXCR3A and CXCR3B. The latter is generated from alternative splicing and results in a protein with a longer N-terminal domain. CXCR3 isoform A is generally considered to play a major role in tumor metastasis. When the entire tumor cell population is examined, CXCR3 isoform B is usually detected at much lower levels than CXCR3A and for this, and other reasons, was not considered to drive tumor progression. We have shown that CXCR3B is significantly upregulated in the subpopulation of breast CSCs in comparison with the bulk tumor cell population in 3 independent breast cancer cell lines (MDA-MB-231, SUM159, and T47D). Modulation of CXCR3B levels by knock in strategies increases CSC populations identified by aldehyde dehydrogenase activity or CD44+CD24− phenotype as well as tumorsphere-forming capacity. The reverse is seen when CXCR3B is gene-silenced. CXCL11 and CXCL10 directly induce CSC. We also report that novel CXCR3 allosteric modulators BD064 and BD103 prevent the induction of CSCs. BD103 inhibited experimental metastasis. This protective effect is associated with the reversal of CXCR3 ligand-mediated activation of STAT3, ERK1/2, CREB, and NOTCH1 pathways. We propose that CXCR3B, expressed on CSC, should be explored further as a novel therapeutic target.


2009 ◽  
Vol 1155 (1) ◽  
pp. 257-262 ◽  
Author(s):  
Letizia Cocciadiferro ◽  
Vitale Miceli ◽  
Kyung-Sun Kang ◽  
Lucia M. Polito ◽  
James E. Trosko ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 13044
Author(s):  
Ari Meerson ◽  
Soliman Khatib ◽  
Jamal Mahajna

Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor’s resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.


2014 ◽  
Vol 21 (1) ◽  
pp. 19-30
Author(s):  
C. Abrudan ◽  
I.S. Florian ◽  
A. Baritchii ◽  
O. Soritau ◽  
S. Dreve ◽  
...  

Abstract Purpose : Glioblastoma multiforme (GBM) remains one of the most devastating diseases known to mankind and affects more than 17,000 patients in the United States alone every year. This malignancy infiltrates the brain early in its course and makes complete neurosurgical resection almost impossible. Recent years have brought significant advances in tumor biology. Many cancers, including gliomas, appear to be supported by cells with stemlike properties. Nanoparticles are excellent candidates to serve as delivery vectors of drugs or biologically active molecules because of their unique chemical and physical properties that result in specific transportation and deposition of such agents in specific organs and tissues.. In the current study we have investigated the in vitro action of nanostructural systems (temozolomide encapsulated in chitosan and polymer nanostructures) on high-grade gliomaderived cancer stem cells (CSCs), with the intention of developing a new therapy to treat specific brain tumors with increased efficacy and minimal toxicity. In vitro cytotoxicity and apoptosis measurements indicated that the drug/vector combination facilitated the ability of the alkylating drug TMZ to alter the resistance of these cancer stem cells, suggesting a new chemotherapy strategy even for patients diagnosed with inoperable or recurrent malignant gliomas Methods : At the National Institute for R & D of Isotopic and Molecular Technologies form Cluj Napoca were synthesized three types of nanostructures chitosan-TMZ, TMZ-chitosan-PEG (polyethylene glycol), TMZ-chitosan-PPG (polypropylene glycol). Three type of cell lines (Glioma-derived stem, HFL and HUVEC) were treated with the 3 types of nanostructures and the survival rate of the cells was compare to standard therapy (TMZ). Results : The results showed a reduction in the rate of survival of the tumor cells. Cell proliferation assays clearly demonstrate the differences betweenconventional chemotherapy (TMZ) and temozolomide encapsulated in chitosan and polymer nanostructures. Conclusion: Nanostructures like chitosan, PEG, PPG are useful as vectors for drugs transport. Despite combined therapy (surgery, radiotherapy, chemotherapy), currently median patient survival is reduced. The key to improving life expectancy could be an effective therapy targeted, customized for each case. An increasingly important role will be new methods of treatment such as immunotherapy, gene therapy or nanotherapy.


2018 ◽  
Vol 47 (5) ◽  
pp. 2147-2158 ◽  
Author(s):  
Feiyu Chen ◽  
Na Luo ◽  
Yu Hu ◽  
Xin Li ◽  
Kejing  Zhang

Background/Aims: Triple negative breast cancer (TNBC) is resistant to conventional chemotherapy due to high proportions of cancer stem cells (CSCs). The aim of this study is to unravel the miR-137-mediated regulatory mechanism of B-cell lymphoma/leukemia 11A (BCL11A) in TNBC. Methods: A corhort of 34 TNBC tumor tissues and paired adjacent normal tissues, as well as 25 non-TNBC tumor tissues and paired adjacent normal tissues were collected post-operatively from patients with breast cancer. Q-PCR was performed to determine the mRNA levels of miR-137 and BCL11A in breast tissues and cell lines. Bioinformatics analysis and dual luciferase reporter assay were used to verify the direct interaction between miR-137 and BCL11A. After up-/down-regulation of BCL11A, miR-137, or DNMT1 via lentiviral transduction in TNBC cell lines SUM149 and MDA-MB-231 cells, Q-PCR and Western blot assays were used to detect the expression levels of BCL11A, DNA methyltransferases 1 (DNMT1), and Islet-1 (ISL1). Mammosphere assay was conducted to assess tumorosphere formation ability of cells, coupled with flow cytometry to determine the percentage of breast cancer stem cells. Co-immunoprecipitation assay was used to determine the interaction between BCL11A and DNMT1. Xenograft tumorigenesis assay was performed to monitor tumor formation in vivo. Results: BCL11A was highly expressed in TNBC, whereas miR-137 was significantly lower in both TNBC tissues and cell lines. miR-137 suppressed BCL11A expression at both mRNA and protein levels by directly targeting its 3’UTR. In both SUM149 and MDA-MB-231 cells, overexpression of miR-137 or knockdown of BCL11A reduced the number of tumoroshperes and the percentage of cancer stem cells in vitro, and inhibited tumor development in vivo. Furthermore, BCL11A interacted with DNMT1 in TNBC cells. Silencing of either BCL11A or DNMT1 impaired cancer stemness and tumorigenesis of TNBC via suppressing ISL1 expression both in vitro, and in vivo. Conclusions: By perturbing BCL11A-DNMT1 interaction, miR-137 impairs cancer stemness and suppresses tumor development in TNBC.


Sign in / Sign up

Export Citation Format

Share Document