scholarly journals Development of Multi-Scale X-ray Fluorescence Tomography for Examination of Nanocomposite-Treated Biological Samples

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4497
Author(s):  
Si Chen ◽  
Ruben Omar Lastra ◽  
Tatjana Paunesku ◽  
Olga Antipova ◽  
Luxi Li ◽  
...  

Research in cancer nanotechnology is entering its third decade, and the need to study interactions between nanomaterials and cells remains urgent. Heterogeneity of nanoparticle uptake by different cells and subcellular compartments represent the greatest obstacles to a full understanding of the entire spectrum of nanomaterials’ effects. In this work, we used flow cytometry to evaluate changes in cell cycle associated with non-targeted nanocomposite uptake by individual cells and cell populations. Analogous single cell and cell population changes in nanocomposite uptake were explored by X-ray fluorescence microscopy (XFM). Very few nanoparticles are visible by optical imaging without labeling, but labeling increases nanoparticle complexity and the risk of modified cellular uptake. XFM can be used to evaluate heterogeneity of nanocomposite uptake by directly imaging the metal atoms present in the metal-oxide nanocomposites under investigation. While XFM mapping has been performed iteratively in 2D with the same sample at different resolutions, this study is the first example of serial tomographic imaging at two different resolutions. A cluster of cells exposed to non-targeted nanocomposites was imaged with a micron-sized beam in 3D. Next, the sample was sectioned for immunohistochemistry as well as a high resolution “zoomed in” X-ray fluorescence (XRF) tomography with 80 nm beam spot size. Multiscale XRF tomography will revolutionize our ability to explore cell-to-cell differences in nanomaterial uptake.

2014 ◽  
Vol 24 (03n04) ◽  
pp. 101-110 ◽  
Author(s):  
S. Matsuyama ◽  
K. Ishii ◽  
S. Suzuki ◽  
A. Terakawa ◽  
M. Fujiwara ◽  
...  

We report on the development of a high-current microbeam system for wavelength-dispersive X-ray micro particle-induced X-ray emission (WDX-[Formula: see text]-PIXE) for chemical state mapping. The microbeam system is composed of two slits and a quadrupole doublet lens mounted on a heavy rigid support. The microbeam system is installed immediately after a switching magnet. A beam brightness of [Formula: see text] is obtained at a half-divergence of 0.1 mrad. A beam current of more than 300 pA is obtained for object sizes of [Formula: see text] with a half-divergence of 0.2 mrad, which corresponds to a beam spot size of [Formula: see text]. The calculated spot size of the beam was [Formula: see text] and the measured spot size was [Formula: see text]. The WDX-[Formula: see text]-PIXE system with the microbeam system is now operational.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1747-C1747
Author(s):  
Jhih-Min Lin ◽  
Yu-Shan Huang ◽  
Chun-Yu Chen ◽  
U-Ser Jeng ◽  
Chung-Yuan Mou ◽  
...  

The coherent X-ray scattering beamline is one of the phase I beamlines designed for the Taiwan Photon Source, a new 3 GeV ring under construction at the National Synchrotron Radiation Research Center in Taiwan. By using a pair of 2m-long in-vacuum undulators, this beamline will provide a highly coherent beam for X-ray photon correlation spectroscopy principally; moreover, it will share a part of beamtime for small-angle X-ray scattering (SAXS) experiments with similar setup of the beamline. The operating photon energy is designed within the range of 5-20 keV. In vertical direction, the beam spot size at sample position is 1 μm with focusing mirror and by using 1D compound refractive lenses (CRLs) the beam spot size is 10 μm. The horizontal beam spot size is in the range of 1 to 10 μm with a two-stage focusing design. The vertical and horizontal transverse coherence lengths of the 10 μm2 beam spot size at the photon energy of 5 KeV are 212 and 6 μm at sample position respectively. Beside XPCS the beamline configuration can cope with the requirements of most SAXS experiments, including anomalous measurements and micro-beam mapping. In addition, the increasing biological SAXS demand is also considered and the on-line fast performance liquid chromatography (FPLC) will be enclosed for biological users.


1999 ◽  
Vol 32 (3) ◽  
pp. 387-392 ◽  
Author(s):  
R. Guillén ◽  
C. Cossu ◽  
T. Jacquot ◽  
M. François ◽  
B. Bourniquel

The effect of the curvature of the sample surface on X-ray diffraction has been studied. A theoretical model, based on a ray-tracing method, has been developed to take into account the geometric effects which modify the collected intensities. The model enables alignment corrections for the sample and the incident beam, in relation to the goniometer centre. This can be achieved by comparing experimental normalized intensities for a zero tilt angle (ψ = 0°) to the normalized intensities calculated by the model. The texture analysis of a zircaloy-4 tube (with a 9.5 mm diameter and an incident-beam spot size of 1.2 mm diameter) confirms the validity of the results.


2001 ◽  
Vol 15 (24n25) ◽  
pp. 3359-3360 ◽  
Author(s):  
Hye-Won Seo ◽  
Quark Y. Chen ◽  
Chong Wang ◽  
Wei-Kan Chu ◽  
T. M. Chuang ◽  
...  

We have fabricated nano-scaled planar superconductor-insulator-superconductor Josephson junctions using focused ion beam (FIB) with beam spot size ~5 nm . To study the effectiveness of this fabrication technique and for the purpose of comparisons, a variety of samples have been made based on high temperature superconducting (HTS) YBa2Cu3O7-δ electrodes. The insulators are either vacuum or silicon dioxide. The samples showed current-voltage (IV) characteristics typical of a resistively shunted junction (RSJ). We will discuss various aspects of the processing methods and the physical significance of the junction characteristics.


2013 ◽  
Vol 84 (7) ◽  
pp. 073102 ◽  
Author(s):  
S. P. Ram ◽  
S. K. Tiwari ◽  
S. R. Mishra ◽  
H. S. Rawat

Author(s):  
Michael Moles

Pipelines are now using Fitness-For-Service (FFS) for accept/reject of weld defects. FFS requires accurate measurement of defect height for Fracture Mechanics assessments. The standard pipeline weld inspection technique of radiography is incapable of such measurements. However, the newer technique of ultrasonics can measure defect height, in principle. Initially ultrasonic amplitude methods were used for height measurement, but these proved unreliable. Now diffraction methods, especially Time-Of-Flight-Diffraction (TOFD), are being used in conjunction. This paper reviews previous work — mainly large nuclear studies like PISC II — and published pipeline sizing studies. The best nuclear sizing was within a few millimetres, using diffraction. In contrast to nuclear, pipeline AUT uses zone discrimination, focused transducers, much thinner material and simpler analysis techniques. Current accuracies are typically ± 1 mm (terminology undefined), which correlates with the beam spot size and typical weld pass. Requests for accuracies of ± 0.3 mm are probably unachievable, though future R&D should significantly improve pipeline sizing.


2016 ◽  
Vol 43 (6Part15) ◽  
pp. 3500-3500
Author(s):  
N Thorne ◽  
A Kassaee

Sign in / Sign up

Export Citation Format

Share Document