scholarly journals A Systems Approach to Interrogate Gene Expression Patterns in African American Men Presenting with Clinically Localized Prostate Cancer

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5143
Author(s):  
Gary Hardiman ◽  
Stephen J. Savage ◽  
E. Starr Hazard ◽  
Willian A. da Silveira ◽  
Rebecca Morgan ◽  
...  

An emerging theory about racial differences in cancer risk and outcomes is that psychological and social stressors influence cellular stress responses; however, limited empirical data are available on racial differences in cellular stress responses among men who are at risk for adverse prostate cancer outcomes. In this study, we undertook a systems approach to examine molecular profiles and cellular stress responses in an important segment of African American (AA) and European American (EA) men: men undergoing prostate biopsy. We assessed the prostate transcriptome with a single biopsy core via high throughput RNA sequencing (RNA-Seq). Transcriptomic analyses uncovered impacted biological pathways including PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction pathway, and ECM-receptor interaction. Additionally, 187 genes mapping to the Gene Ontology (GO) terms RNA binding, structural constituent of ribosome, SRP-dependent co-translational protein targeting to membrane and the biological pathways, translation, L13a-mediated translational silencing of Ceruloplasmin expression were differentially expressed (DE) between EA and AA. This signature allowed separation of AA and EA patients, and AA patients with the most severe clinical characteristics. AA patients with elevated expression levels of this genomic signature presented with higher Gleason scores, a greater number of positive core biopsies, elevated dehydroepiandrosterone sulfate levels and serum vitamin D deficiency. Protein-protein interaction (PPI) network analysis revealed a high degree of connectivity between these 187 proteins.

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 99
Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 552
Author(s):  
Wenbo Hu ◽  
Xiaogang Wang ◽  
Sanyuan Ma ◽  
Zhangchuan Peng ◽  
Yang Cao ◽  
...  

The silkworm Bombyx mori is an economically important insect, as it is the main producer of silk. Fibroin heavy chain (FibH) gene, encoding the core component of silk protein, is specifically and highly expressed in silk gland cells but not in the other cells. Although the silkworm FibH gene has been well studied in transcriptional regulation, its biological functions in the development of silk gland cells remain elusive. In this study, we constructed a CRISPRa system to activate the endogenous transcription of FibH in Bombyx mori embryonic (BmE) cells, and the mRNA expression of FibH was successfully activated. In addition, we found that FibH expression was increased to a maximum at 60 h after transient transfection of sgRNA/dCas9-VPR at a molar ratio of 9:1. The qRT-PCR analysis showed that the expression levels of cellular stress response-related genes were significantly up-regulated along with activated FibH gene. Moreover, the lyso-tracker red and monodansylcadaverine (MDC) staining assays revealed an apparent appearance of autophagy in FibH-activated BmE cells. Therefore, we conclude that the activation of FibH gene leads to up-regulation of cellular stress responses-related genes in BmE cells, which is essential for understanding silk gland development and the fibroin secretion process in B. mori.


2010 ◽  
Vol 40 (2) ◽  
pp. 175 ◽  
Author(s):  
Feng Chen ◽  
Allyson Evans ◽  
John Pham ◽  
Brian Plosky

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yusuke Kanamaru ◽  
Shiori Sekine ◽  
Hidenori Ichijo ◽  
Kohsuke Takeda

To maintain cellular homeostasis, cells are equipped with precise systems that trigger the appropriate stress responses. Mitochondria not only provide cellular energy but also integrate stress response signaling pathways, including those regulating cell death. Several lines of evidence suggest that the mitochondrial proteins that function in this process, such as Bcl-2 family proteins in apoptosis and phosphoglycerate mutase family member 5 (PGAM5) in necroptosis, are regulated by several kinases. It has also been suggested that the phosphorylation-dependent regulation of mitochondrial fission machinery, dynamin-related protein 1 (Drp1), facilitates appropriate cellular stress responses. However, mitochondria themselves are also damaged by various stresses. To avoid the deleterious effects exerted by damaged mitochondria, cells remove these mitochondria in a selective autophagic degradation process called mitophagy. Interestingly, several kinases, such as PTEN-induced putative kinase 1 (PINK1) in mammals and stress-responsive mitogen-activated protein (MAP) kinases in yeast, have recently been shown to be involved in mitophagy. In this paper, we focus on the phosphorylation-dependent regulation of mitochondrial proteins and discuss the roles of this regulation in the mitochondrial and cellular stress responses.


2018 ◽  
Vol 6 (24) ◽  
pp. e13926 ◽  
Author(s):  
Alex B. Addinsall ◽  
Sheree D. Martin ◽  
Fiona Collier ◽  
Xavier A. Conlan ◽  
Victoria C. Foletta ◽  
...  

2016 ◽  
Vol 170 ◽  
pp. 62-71 ◽  
Author(s):  
Halina Falfushynska ◽  
Lesya Gnatyshyna ◽  
Olga Fedoruk ◽  
Inna M. Sokolova ◽  
Oksana Stoliar

2018 ◽  
Vol 475 (6) ◽  
pp. 1037-1057 ◽  
Author(s):  
Alex B. Addinsall ◽  
Craig R. Wright ◽  
Sof Andrikopoulos ◽  
Chris van der Poel ◽  
Nicole Stupka

Chronic metabolic stress leads to cellular dysfunction, characterized by excessive reactive oxygen species, endoplasmic reticulum (ER) stress and inflammation, which has been implicated in the pathogenesis of obesity, type 2 diabetes and cardiovascular disease. The ER is gaining recognition as a key organelle in integrating cellular stress responses. ER homeostasis is tightly regulated by a complex antioxidant system, which includes the seven ER-resident selenoproteins — 15 kDa selenoprotein, type 2 iodothyronine deiodinase and selenoproteins S, N, K, M and T. Here, the findings from biochemical, cell-based and mouse studies investigating the function of ER-resident selenoproteins are reviewed. Human experimental and genetic studies are drawn upon to highlight the relevance of these selenoproteins to the pathogenesis of metabolic disease. ER-resident selenoproteins have discrete roles in the regulation of oxidative, ER and inflammatory stress responses, as well as intracellular calcium homeostasis. To date, only two of these ER-resident selenoproteins, selenoproteins S and N have been implicated in human disease. Nonetheless, the potential of all seven ER-resident selenoproteins to ameliorate metabolic dysfunction warrants further investigation.


Sign in / Sign up

Export Citation Format

Share Document