scholarly journals Beta-Caryophyllene Exhibits Anti-Proliferative Effects through Apoptosis Induction and Cell Cycle Modulation in Multiple Myeloma Cells

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5741
Author(s):  
Federica Mannino ◽  
Giovanni Pallio ◽  
Roberta Corsaro ◽  
Letteria Minutoli ◽  
Domenica Altavilla ◽  
...  

Cannabinoid receptors, which are widely distributed in the body, have been considered as possible pharmacological targets for the management of several tumors. Cannabinoid type 2 receptors (CB2Rs) belong to the G protein-coupled receptor family and are mainly expressed in hematopoietic and immune cells, such as B-cells, T-cells, and macrophages; thus, CB2R activation might be useful for treating cancers affecting plasma cells, such as multiple myeloma (MM). Previous studies have shown that CB2R stimulation may have anti-proliferative effects; therefore, the purpose of the present study was to explore the antitumor effect of beta-caryophyllene (BCP), a CB2R agonist, in an in vitro model of MM. Dexamethasone-resistant (MM.1R) and sensitive (MM.1S) human multiple myeloma cell lines were used in this study. Cells were treated with different concentrations of BCP for 24 h, and a group of cells was pre-incubated with AM630, a specific CB2R antagonist. BCP treatment reduced cell proliferation through CB2R stimulation; notably, BCP considerably increased the pro-apoptotic protein Bax and decreased the anti-apoptotic molecule Bcl-2. Furthermore, an increase in caspase 3 protein levels was detected following BCP incubation, thus demonstrating its anti-proliferative effect through apoptosis activation. In addition, BCP regulated AKT, Wnt1, and beta-catenin expression, showing that CB2R stimulation may decrease cancer cell proliferation by modulating Wnt/β-catenin signaling. These effects were counteracted by AM630 co-incubation, thus confirming that BCP’s mechanism of action is mainly related to CB2R modulation. A decrease in β-catenin regulated the impaired cell cycle and especially promoted cyclin D1 and CDK 4/6 reduction. Taken together, these data revealed that BCP might have significant and effective anti-cancer and anti-proliferative effects in MM cells by activating apoptosis, modulating different molecular pathways, and downregulating the cell cycle.

2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 5002-5010 ◽  
Author(s):  
Nizar J. Bahlis ◽  
Anne M. King ◽  
Despina Kolonias ◽  
Louise M. Carlson ◽  
Hong Yu Liu ◽  
...  

Abstract Although interactions with bone marrow stromal cells are essential for multiple myeloma (MM) cell survival, the specific molecular and cellular elements involved are largely unknown, due in large part to the complexity of the bone marrow microenvironment itself. The T-cell costimulatory receptor CD28 is also expressed on normal and malignant plasma cells, and CD28 expression in MM correlates significantly with poor prognosis and disease progression. In contrast to T cells, activation and function of CD28 in myeloma cells is largely undefined. We have found that direct activation of myeloma cell CD28 by anti-CD28 mAb alone induces activation of PI3K and NFκB, suppresses MM cell proliferation, and protects against serum starvation and dexamethasone (dex)–induced cell death. Coculture with dendritic cells (DCs) expressing the CD28 ligands CD80 and CD86 also elicits CD28-mediated effects on MM survival and proliferation, and DCs appear to preferentially localize within myeloma infiltrates in primary patient samples. Our findings suggest a previously undescribed myeloma/DC cell-cell interaction involving CD28 that may play an important role in myeloma cell survival within the bone marrow stroma. These data also point to CD28 as a potential therapeutic target in the treatment of MM.


2021 ◽  
pp. 1-11
Author(s):  
Katrina A. Harmon ◽  
Sara Roman ◽  
Harrison D. Lancaster ◽  
Saeeda Chowhury ◽  
Elizabeth Cull ◽  
...  

Multiple myeloma (MM) is a deadly, incurable malignancy in which antibody-secreting plasma cells (PCs) become neoplastic. Previous studies have shown that the PC niche plays a role cancer progression. Bone marrow (BM) cores from MM and a premalignant condition known as monoclonal gammopathy of unknown significance (MGUS) patients were analyzed with confocal and transmission electron microscopy. The BM aspirates from these patients were used to generate 3D PC cultures. These in vitro cultures were then assayed for the molecular, cellular, and ultrastructural hallmarks of dysfunctional PC at days 1 and 5. In vivo, evidence of PC endoplasmic reticulum stress was found in both MM and MGUS BM; however, evidence of PC autophagy was found only in MM BM. Analysis of in vitro cultures found that MM PC can survive and maintain a differentiated phenotype over an unprecedented 5 days, had higher levels of paraprotein production when compared to MGUS-derived cultures, and showed evidence of PC autophagy as well. Increased fibronectin deposition around PC associated with disease severity and autophagy dysregulation was also observed. 3D cultures constructed from BM aspirates from MGUS and MM patients allow for long-term culture of functional PC while maintaining their distinct morphological phenotypes.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5045-5045
Author(s):  
Philipp Baumann ◽  
Sonja Mandl-Weber ◽  
Bertold Emmerich ◽  
Christian Straka ◽  
Daniel Franke ◽  
...  

Abstract In multiple myeloma (MM), a network of cytokines in the bone marrow microenvironment promotes myeloma cell proliferation. Consequent inhibition of intracellular signalling in the myeloma cells seems to be a promising strategy to encounter disease progression. The multiple myeloma cell lines U266, OPM-2, RPMI-8226 and NCI-H929 were incubated with the AMPK activators AICAr and D942. Basal and cytokine stimulated proliferation rates of myeloma cells were measured by the WST-1 assay. Alterations of the cell cycle were determined by flow cytometry after staining with propidium iodide. Intracellular signalling was shown by western blotting. The AMPK activators 5-aminoimidazole-4-carboxamide (AICAr) and D942 induced inhibition of proliferation in multiple myeloma cell lines. AICAr also induced a S-phase cell cycle arrest in all four tested cell lines and led to phosphorylation and herewith activation of AMPK. Furthermore, the inhibition of a nucleoside transporter by nitrobenzyl-thio-9-β-D-ribofuranosylpurine (NBTI), inhibition of the adenosine kinase by iodotubericidine and inhibition of AMPK by AMPKI Compound C reversed AICAr effects, indicating that the cellular effects of AICAr were mediated by AMPK. Activation of AMPK inhibited basal extracellular-signal regulated kinase (ERK), mTOR and P70S6 kinase (P70S6K) signalling and blocked cytokine induced increase of proliferation, which again was due to inhibition of ERK and P70S6K signalling. Troglitazone, a representative of a group of anti-diabetic drugs, similarly inhibited myeloma cell proliferation, activated AMPK and decreased ERK and P70S6K signalling. We demonstrate for the first time that myeloma cell proliferation is controlled by AMPK activity. Consequently, targeting this pathway by inhibitors like glitazones provides a novel strategy in myeloma therapy.


Blood ◽  
2006 ◽  
Vol 108 (5) ◽  
pp. 1698-1707 ◽  
Author(s):  
Francesco A. Piazza ◽  
Maria Ruzzene ◽  
Carmela Gurrieri ◽  
Barbara Montini ◽  
Luca Bonanni ◽  
...  

Casein kinase 2 (CK2) is a ubiquitous cellular serine-threonine kinase that regulates relevant biologic processes, many of which are dysregulated in malignant plasma cells. Here we investigated its role in multiple myeloma (MM). Analysis of MM cell lines and highly purified malignant plasma cells in patients with MM revealed higher protein and CK2 activity levels than in controls (normal in vitro-generated polyclonal plasma cells and B lymphocytes). The inhibition of CK2 with specific synthetic compounds or by means of RNA interference caused a cytotoxic effect on MM plasma cells that could not be overcome by IL-6 or IGF-I and that was associated with the activation of extrinsic and intrinsic caspase cascades. CK2 blockage lowered the sensitivity threshold of MM plasma cells to the cytotoxic effect of melphalan. CK2 inhibition also resulted in impaired IL-6-dependent STAT3 activation and in decreased basal and TNF-α-dependent IκBα degradation and NF-κB-driven transcription. Our data show that CK2 was involved in the pathophysiology of MM, suggesting that it might play a crucial role in controlling survival and sensitivity to chemotherapeutics of malignant plasma cells.


Leukemia ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2114-2121 ◽  
Author(s):  
D Wang ◽  
Y Fløisand ◽  
C V Myklebust ◽  
S Bürgler ◽  
A Parente-Ribes ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kazuya Ishiguro ◽  
Hiroshi Kitajima ◽  
Takeshi Niinuma ◽  
Reo Maruyama ◽  
Naotaka Nishiyama ◽  
...  

AbstractEpigenetic mechanisms such as histone modification play key roles in the pathogenesis of multiple myeloma (MM). We previously showed that EZH2, a histone H3 lysine 27 (H3K27) methyltransferase, and G9, a H3K9 methyltransferase, are potential therapeutic targets in MM. Moreover, recent studies suggest EZH2 and G9a cooperate to regulate gene expression. We therefore evaluated the antitumor effect of dual EZH2 and G9a inhibition in MM. A combination of an EZH2 inhibitor and a G9a inhibitor strongly suppressed MM cell proliferation in vitro by inducing cell cycle arrest and apoptosis. Dual EZH2/G9a inhibition also suppressed xenograft formation by MM cells in vivo. In datasets from the Gene Expression Omnibus, higher EZH2 and EHMT2 (encoding G9a) expression was significantly associated with poorer prognoses in MM patients. Microarray analysis revealed that EZH2/G9a inhibition significantly upregulated interferon (IFN)-stimulated genes and suppressed IRF4-MYC axis genes in MM cells. Notably, dual EZH2/G9a inhibition reduced H3K27/H3K9 methylation levels in MM cells and increased expression of endogenous retrovirus (ERV) genes, which suggests that activation of ERV genes may induce the IFN response. These results suggest that dual targeting of EZH2 and G9a may be an effective therapeutic strategy for MM.


Blood ◽  
1998 ◽  
Vol 92 (1) ◽  
pp. 241-251 ◽  
Author(s):  
Feng-hao Xu ◽  
Sanjesh Sharma ◽  
Agnes Gardner ◽  
Yiping Tu ◽  
Arthur Raitano ◽  
...  

The mechanism by which interleukin-6 (IL-6) protects multiple myeloma (MM) plasma cells from apoptosis induced by anti-fas antibodies and dexamethasone was studied. Anti-apoptotic concentrations of IL-6 had no effect on cell-cycle distribution or activation of RAF-1 or ERK in dexamethasone- or anti–fas-treated 8226 and UCLA #1 MM cell lines. However, IL-6–dependent protection of viability correlated with an inhibition of dexamethasone- and anti–fas-induced activation ofjun kinase (JNK) and AP-1 transactivation. To test the hypothesis that cytokine-induced protection was mediated through inhibition of JNK/c-jun, we also inhibited c-junfunction in 8226 cells via introduction of a mutant dominant negative c-jun construct. Mutant c-jun–containing MM cells were also resistant to anti–fas-induced apoptosis but were significantly more sensitive to dexamethasone-induced apoptosis. These results support the notion that IL-6 protects MM cells against anti-fas through its inhibitory effects on JNK/c-junbut indicate protection against dexamethasone occurs through separate, yet unknown pathways.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini ◽  
Federica Maggi ◽  
Oliviero Marinelli ◽  
Matteo Santoni ◽  
...  

Multiple myeloma (MM) is a haematological B cell malignancy characterised by clonal proliferation of plasma cells and their accumulation in the bone marrow. The aim of the present study is the evaluation of biological effects of Ibrutinib in human MM cell lines alone or in combination with different doses of Bortezomib. In addition, the relationship between the expression of TRPML2 channels and chemosensitivity of different MM cell lines to Ibrutinib administered alone or in combination with Bortezomib has been evaluated. By RT-PCR and Western blot analysis, we found that the Ibrutinib-resistant U266 cells showed lower TRPML2 expression, whereas higher TRPML2 mRNA and protein levels were evidenced in RPMI cells. Moreover, TRPML2 gene silencing in RPMI cells markedly reverted the effects induced by Ibrutinib alone or in combination with Bortezomib suggesting that the sensitivity to Ibrutinib is TRPML2 mediated. In conclusion, this study suggests that the expression of TRPML2 in MM cells increases the sensitivity to Ibrutinib treatment, suggesting for a potential stratification of Ibrutinib sensitivity of MM patients on the basis of the TRPML2 expression. Furthermore, studies in vitro and in vivo should still be necessary to completely address the molecular mechanisms and the potential role of TRPML2 channels in therapy and prognosis of MM patients.


Sign in / Sign up

Export Citation Format

Share Document