scholarly journals Payload Delivery: Engineering Immune Cells to Disrupt the Tumour Microenvironment

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6000
Author(s):  
Daniel Fowler ◽  
Callum Nattress ◽  
Alba Southern Navarrete ◽  
Marta Barisa ◽  
Jonathan Fisher

Although chimeric antigen receptor (CAR) T cells have shown impressive clinical success against haematological malignancies such as B cell lymphoma and acute lymphoblastic leukaemia, their efficacy against non-haematological solid malignancies has been largely disappointing. Solid tumours pose many additional challenges for CAR T cells that have severely blunted their potency, including homing to the sites of disease, survival and persistence within the adverse conditions of the tumour microenvironment, and above all, the highly immunosuppressive nature of the tumour milieu. Gene engineering approaches for generating immune cells capable of overcoming these hurdles remain an unmet therapeutic need and ongoing area of research. Recent advances have involved gene constructs for membrane-bound and/or secretable proteins that provide added effector cell function over and above the benefits of classical CAR-mediated cytotoxicity, rendering immune cells not only as direct cytotoxic effectors against tumours, but also as vessels for payload delivery capable of both modulating the tumour microenvironment and orchestrating innate and adaptive anti-tumour immunity. We discuss here the novel concept of engineered immune cells as vessels for payload delivery into the tumour microenvironment, how these cells are better adapted to overcome the challenges faced in a solid tumour, and importantly, the novel gene engineering approaches required to deliver these more complex polycistronic gene constructs.

2020 ◽  
Vol 14 (4) ◽  
pp. 312-323
Author(s):  
Romeo G. Mihăilă

Background: Patients with refractory or relapsed diffuse large B-cell lymphoma have a poor prognosis with the current standard of care. Objective: Chimeric Antigen Receptor T-cells (CAR T-cells) are functionally reprogrammed lymphocytes, which are able to recognize and kill tumor cells. The aim of this study is to make progress in this area. Method: A mini-review was achieved using the articles published in Web of Science and PubMed in the last year and the new patents were made in this field. Results: The responses to CAR T-cell products axicabtagene ciloleucel and tisagenlecleucel are promising; the objective response rate can reach up to 83%, and the complete response rate ranges between 40 and 58%. About half of the patients may have serious side effects, such as cytokine release syndrome and neurotoxicity. Current and future developments include the improvement of CAR T-cell expansion and polyfunctionality, the combined use of CAR T-cells with a fusion protein between interferon and an anti-CD20 monoclonal antibody, with checkpoint inhibitors or small molecule sensitizers that have apoptotic-regulatory effects. Furthermore, the use of IL-12-expressing CAR T-cells, an improved technology for the production of CAR T-cells based on targeted nucleases, the widespread use of allogeneic CAR T-cells or universal CAR T-cells obtained from genetically engineered healthy donor T-cells are future developments actively considered. Conclusion: CAR T-cell therapy significantly improved the outcome of patients with relapsed or refractory diffuse large B-cell lymphoma. The advances in CAR T-cells production technology will improve the results and enable the expansion of this new immunotherapy.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A26.2-A27
Author(s):  
M Seifert ◽  
M Benmebarek ◽  
B Cadilha ◽  
J Jobst ◽  
J Dörr ◽  
...  

BackgroundDespite remarkable response rates mediated by anti-CD19 chimeric antigen receptor (CAR) T cells in selected B cell malignancies, CAR T cell therapy still lacks efficacy in the vast majority of tumors. A substantial limiting factor of CAR T cell function is the immunosuppressive tumor microenvironment. Among other mechanisms, the accumulation of adenosine within the tumor can contribute to disease progression by suppressing anti-tumor immune responses. Adenosine 2a- and 2b-receptor (A2A and A2B)-mediated cAMP build-up suppresses T cell effector functions. In the present study we hypothesize, that combination therapy with the selective A2A/A2B dual antagonist AB928 (etrumadenant) enhances CAR T cell efficacy.Materials and MethodsSecond generation murine (anti-EPCAM) and human (anti-MSLN) CAR constructs, containing intracellular CD28 and CD3ζ domains, were fused via overlap extension PCR cloning. Murine or human T cells were retrovirally transduced to stably express the CAR constructs. A2A/A2B signaling in CAR T cells was analyzed by phospho-specific flow cytometry of CREB (pS133)/ATF-1 (pS63). CAR T cell activation was quantified by flow cytometry and enzyme-linked immunosorbent assay (ELISA) of IFN-γ, IL-2 and TNF-α. CAR T cell proliferation was assessed by flow cytometry. CAR T cell cytotoxicity was assessed by impedance based real-time cell analysis.ResultsAB928 protected murine CAR T cells from cAMP response element-binding protein (CREB) phosphorylation in the presence of stable adenosine analogue 5′-N-ethylcarboxamidoadenosine (NECA). NECA inhibited antigen-dependent CAR T cell cytokine secretion in response to four murine tumor cell lines. CAR T cell-mediated tumor cell lysis as well as proliferation were decreased in the presence of NECA or adenosine. Importantly, AB928 fully restored CAR T cell cytotoxicity, proliferation, and cytokine secretion in a dose dependent manner. Further, AB928 also restored antigen dependent cytokine secretion of human CAR T cells in the presence of NECA.ConclusionsHere we used the A2A/A2B dual antagonist AB928 to overcome adenosine-mediated suppression of CAR T cells. We found that AB928 enhanced important CAR T cell effector functions in the presence of the adenosine analogue, suggesting that combination therapy with AB928 may improve CAR T cell efficacy. This study was limited to in vitro experiments. To confirm the relevance of our findings, this combination therapy must be further investigated in an in vivo setting.Disclosure InformationM. Seifert: None. M. Benmebarek : None. B. Cadilha : None. J. Jobst: None. J. Dörr: None. T. Lorenzini: None. D. Dhoqina: None. J. Zhang: None. J. Zhang: None. U. Schindler: E. Ownership Interest (stock, stock options, patent or other intellectual property); Modest; Amgen Inc., Arcus Biosciences. Other; Significant; Arcus Biosciences. S. Endres: None. S. Kobold: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Significant; Arcus Biosciences.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Maschan ◽  
Paolo F. Caimi ◽  
Jane Reese-Koc ◽  
Gabriela Pacheco Sanchez ◽  
Ashish A. Sharma ◽  
...  

AbstractChimeric antigen receptor (CAR) T cells targeting the CD19 antigen are effective in treating adults and children with B-cell malignancies. Place-of-care manufacturing may improve performance and accessibility by obviating the need to cryopreserve and transport cells to centralized facilities. Here we develop an anti-CD19 CAR (CAR19) comprised of the 4-1BB co-stimulatory and TNFRSF19 transmembrane domains, showing anti-tumor efficacy in an in vivo xenograft lymphoma model. CAR19 T cells are manufactured under current good manufacturing practices (cGMP) at two disparate clinical sites, Moscow (Russia) and Cleveland (USA). The CAR19 T-cells is used to treat patients with relapsed/refractory pediatric B-cell Acute Lymphocytic Leukemia (ALL; n = 31) or adult B-cell Lymphoma (NHL; n = 23) in two independently conducted phase I clinical trials with safety as the primary outcome (NCT03467256 and NCT03434769, respectively). Probability of measurable residual disease-negative remission was also a primary outcome in the ALL study. Secondary outcomes include complete remission (CR) rates, overall survival and median duration of response. CR rates are 89% (ALL) and 73% (NHL). After a median follow-up of 17 months, one-year survival rate of ALL complete responders is 79.2% (95%CI 64.5‒97.2%) and median duration of response is 10.2 months. For NHL complete responders one-year survival is 92.9%, and median duration of response has not been reached. Place-of-care manufacturing produces consistent CAR-T cell products at multiple sites that are effective for the treatment of patients with B-cell malignancies.


Author(s):  
Behrouz Shademan ◽  
Vahidreza Karamad ◽  
Alireza Nourazarian ◽  
Cigir Biray Avcı

Immunotherapy has become a prominent strategy for the treatment of cancer. A method that improves the immune system's ability to attack a tumor (Enhances antigen binding). Targeted killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a promising immunotherapy technique in the treatment of cancers. For this purpose, the patient's immune cells, with genetic engineering aid, are loaded with chimeric receptors that have particular antigen binding and activate cytotoxic T lymphocytes. That increases the effectiveness of immune cells and destroying cancer cells. This review discusses the basic structure and function of CAR-T cells and how antigenic targets are identified to treat different cancers and address the disadvantages of this treatment for cancer.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 44-44
Author(s):  
McKensie Collins ◽  
Weimin Kong ◽  
Inyoung Jung ◽  
Stefan M Lundh ◽  
J. Joseph Melenhorst

Chronic Lymphocytic Leukemia (CLL) is a B cell malignancy that accounts for nearly 1/3rd of adult leukemia diagnoses in the Western world. Conventional chemo-immunotherapies initially control progression, but in the absence of curative options patients ultimately succumb to their disease. Chimeric Antigen Receptor (CAR) T cell therapy is potentially curative, but only 26% of CLL patients have a complete response. CLL-stimulated T cells have reduced effector functions and B-CLL cells themselves are believed to be immunosuppressive. Our work demonstrates that insufficient activation of CAR T cells by CLL cells mediates some of these effects and that the results are conserved between ROR1- and CD19-targeting CARs. Results: In this study we used an in vitro system to model the in vivo anti-tumor response in which CAR T cells serially engage with CLL cells. Multiple stimulations of CD19 or ROR1-targeting CAR T cells with primary CLL cells recapitulated many aspects of known T cell dysfunction including reduced proliferation, cytokine production, and activation. While the initial stimulation induced low level proliferation, subsequent stimulations failed to elicit additional effector functions. We further found that these functional defects were not permanent, and that CAR T cell function could be restored by switching to a stimulus with an aAPC (artificial Antigen Presenting Cell) control cell line. The aAPCs are well-characterized as potent stimulators of CAR T cell effector responses. Flow cytometry revealed that CLL-stimulated CAR T cells retained a non-activated, baseline differentiation profile, suggesting that CLL cells fail to stimulate CAR T cells rather than rendering them non-functional. One mechanism that could dampen activation is immune suppression. We assessed this at a high level by stimulating CAR T cells with CLL cells and aAPCs mixed at known ratios. However, even cultures containing 75% CLL cells stimulated proliferation and cytokine production. Extensive immune-phenotyping revealed high level expression of the IL-2 Receptor on 90% (18/20) of the B-CLL cells tested. Since cytokine sinking via IL-2 receptor expression is a well-known mechanism of regulatory T cell suppression, we hypothesized that CLL cells similarly sink IL-2, blunting T cell activation. To test this, we supplemented IL-2 into CLL/CAR T cell co-cultures and showed that this rescued proliferation but only partially restored cytokine production. In contrast to our hypothesis, analysis of cytokine production by flow cytometry showed that CLL-stimulated CAR T cells did not produce IL-2 following a 6- or 12-hour stimulus, but TNFα was expressed after 12-hours. Similarly, CAR T cell degranulation, a prerequisite for target cell lysis was triggered after CLL recognition. These data again suggested that CLL cells insufficiently stimulate CAR T cell cytokine production, but also showed that cytolytic activity against CLL cells is intact. We further proposed that CLL cells express insufficient levels of co-stimulatory and adhesion molecules to activate CAR T cells. Flow cytometry showed that most CLL cells expressed co-stimulatory and adhesion molecules at low levels; we hypothesized that up-regulating these molecules would enhance CAR T cell targeting of CLL cells. CLL cells were activated with CD40L and IL-4, which increased expression of CD54, CD58, CD80, and CD86. Stimulating CAR T cells with activated CLL cells enhanced CAR T cell proliferation and induced cell conjugate formation, indicating cell activation. Therefore, improving CLL stimulatory capacity can rescue T cell dysfunctions. To assess whether IL-2 addition and CD40 ligation were synergistic, we combined the two assays; however, we saw no additional improvement over IL-2 addition alone, suggesting that the two interventions may act upon the same pathway. Importantly, we also showed that rescue of CAR T cell function via IL-2 addition or CD40 ligation was not CAR-specific, as we observed the functional defects and subsequent rescue with both a ROR1-targeting CAR and the gold standard CD19-targeting CAR. Conclusions: Together, these data show that CAR T cell "defects" in CLL are actually insufficient activation, and improving the stimulatory capacity of CLL cells may enable better clinical responses. Further, this effect is not CAR-specific and these results may therefore be broadly applicable to multiple therapies for this disease. Disclosures Melenhorst: IASO Biotherapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Kite Pharma: Research Funding; Novartis: Other: Speaker, Research Funding; Johnson & Johnson: Consultancy, Other: Speaker; Simcere of America: Consultancy; Poseida Therapeutics: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3032-3032
Author(s):  
Arantxa Romero-Toledo ◽  
Robin Sanderson ◽  
John G. Gribben

The complex crosstalk between malignant chronic lymphocytic leukemia (CLL) cells and the tumor microenvironment (TME) is not fully understood. CLL is associated with an inflammatory TME and T cells exhibit exhaustion and multiple functional defects, fully recapitulated in Eµ-TCL1 (TCL1) mice and induced in healthy mice by adoptive transfer (AT) of murine CLL cells, making it an ideal model to test novel immunotherapies for this disease. Myeloid-derived suppressor cells (MDSCs), a non-leukemic cell type within the TME, are immature myeloid cells with the ability to suppress T cell function and promote Treg expansion. In humans, CLL cells can induce conversion of monocytes to MDSCs provoking their accumulation in peripheral blood (PB). MDSCs include two major subsets granulocytic (Gr) and monocytic (M)-MDSC. In mice, Gr-MDSCs are defined as CD11b+Ly6G+Ly6Clo and M-MDSC as CD11b+Ly6G-Ly6Chi. Both murine and human MDSCs express BTK. We observed that in CLL-bearing mice, MDSCs cells are lost in PB as disease progresses. Treatment with both BTK inhibitors (BTKi), ibrutinib (Ibr) and acalabrutinib (Acala), result in shift of T cell function from Th2 towards Th1 polarity and increase MDSC populations in vivo. We aimed to determine whether combination treatment with BTKi and chimeric antigen receptor (CAR) T cells renders recovery of the MDSC population in CLL-bearing mice. To address this question we designed a two-part experiment, aiming to mimic the clinically relevant scenario of pre-treatment of CLL with BTKi to improve CAR T cell function. Part 1 of our experiment consisted of 4 groups (n=12) of 2.5 month old C57/Bl6 mice. Three groups had AT with 30x106 TCL1 splenocytes. A fourth group of WT mice remained CLL-free as a positive control and donors for WT T cells. When PB CLL load reached >10% (day 14) animals were randomized to either Ibr or Acala at 0.15 mg/l in 2% HPBC or no treatment for 21 days. All animals from part 1 were culled at day 35 post-AT and splenic cells were isolated, analyzed and used to manufacture CAR T cells. WT, CLL, Ibr and Acala treated T cells were activated and transduced with a CD19-CD28 CAR to treat mice in part 2. Here, 50 WT mice were given AT with 20x106 TCL1 splenocytes for CLL engraftment. All mice were injected with lymphodepleting cyclophosphamide (100mg/kg IP) one day prior to IV CAR injection. At day 21 post-AT, mice were treated with WT CAR, CLL CAR, IbrCAR, AcalaCAR or untransduced T cells. MDSC sub-populations were monitored weekly in PB and SP were analysed by flow cytometry. As malignant CD19+CD5+ cells expands in PB, the overall myeloid (CD19-CD11b+) cell population was not affected, but MDSCs significantly decreased (p<0.0001). Treatment with Acala, but not Ibr restores total MDSCs. However, MDSC impairment occurs in the Gr- but not M- MDSC population and both Acala and Ibr restores this population (Figure 1a). When we examined the spleen, treatment with both Ibr (p<0.001) and Acala (p<0.001) reduced CD5+CD19+ cells, whereas neither BTKi affected the overall myeloid (CD19-CD11b+) cell population. Gr-MDSCs were restored by both treatments whilst M-MDSCs were only restored after Ibr treatment (p<0.001 in each case). In part 2 of this experiment we observed that treatment with all CAR-T cell groups provokes the clearance of all CD19+CD5+ cells. The overall CD19-CD11b+ population stays the same across all mice groups 35 days after treatment in PB with any group of CAR and untransduced T cells. Overall MDSC population is maintained following all CAR T cells compared to CLL-bearing mice (p<0.0001) and it is the Gr- but not the M- MDSC population which is recovered in PB (Figure 1b). These parts of the experiments can of course be influenced by treatment with cyclophosphamide. We conclude that novel therapies for CLL treatment have an effect not only in CLL cells but also in non-malignant cell components of the TME. In this animal model of CLL, the rapid expansion of CLL cells in PB and secondary lymphoid organs provokes loss of MDSC, particularly the Gr-MDSC subpopulation is affected. Treatment with BTKi and CAR T cells provokes clearance of CLL cells in PB and spleen allowing MDSC recovery; suggesting this may be BTK and ITK independent. We continue to explore secondary lymphoid organs to further characterize the shift of the CLL microenvironment from an immunosuppressive to an immune effective one and its impact on immune function in this model. Disclosures Sanderson: Kite/Gilead: Honoraria. Gribben:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document