scholarly journals Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Jose M. Castillo T. ◽  
Muhammad Arif ◽  
Martijn P. A. Starmans ◽  
Wiro J. Niessen ◽  
Chris H. Bangma ◽  
...  

The computer-aided analysis of prostate multiparametric MRI (mpMRI) could improve significant-prostate-cancer (PCa) detection. Various deep-learning- and radiomics-based methods for significant-PCa segmentation or classification have been reported in the literature. To be able to assess the generalizability of the performance of these methods, using various external data sets is crucial. While both deep-learning and radiomics approaches have been compared based on the same data set of one center, the comparison of the performances of both approaches on various data sets from different centers and different scanners is lacking. The goal of this study was to compare the performance of a deep-learning model with the performance of a radiomics model for the significant-PCa diagnosis of the cohorts of various patients. We included the data from two consecutive patient cohorts from our own center (n = 371 patients), and two external sets of which one was a publicly available patient cohort (n = 195 patients) and the other contained data from patients from two hospitals (n = 79 patients). Using multiparametric MRI (mpMRI), the radiologist tumor delineations and pathology reports were collected for all patients. During training, one of our patient cohorts (n = 271 patients) was used for both the deep-learning- and radiomics-model development, and the three remaining cohorts (n = 374 patients) were kept as unseen test sets. The performances of the models were assessed in terms of their area under the receiver-operating-characteristic curve (AUC). Whereas the internal cross-validation showed a higher AUC for the deep-learning approach, the radiomics model obtained AUCs of 0.88, 0.91 and 0.65 on the independent test sets compared to AUCs of 0.70, 0.73 and 0.44 for the deep-learning model. Our radiomics model that was based on delineated regions resulted in a more accurate tool for significant-PCa classification in the three unseen test sets when compared to a fully automated deep-learning model.

2020 ◽  
Author(s):  
Hyung Jun Park ◽  
Dae Yon Jung ◽  
Wonjun Ji ◽  
Chang-Min Choi

BACKGROUND Detecting bacteremia among surgical in-patients is more obscure than other patients due to the inflammatory condition caused by the surgery. The previous criteria such as systemic inflammatory response syndrome or Sepsis-3 are not available for use in general wards, and thus, many clinicians usually rely on practical senses to diagnose postoperative infection. OBJECTIVE This study aims to evaluate the performance of continuous monitoring with a deep learning model for early detection of bacteremia for surgical in-patients in the general ward and the intensive care unit (ICU). METHODS In this retrospective cohort study, we included 36,023 consecutive patients who underwent general surgery between October and December 2017 at a tertiary referral hospital in South Korea. The primary outcome was the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) for detecting bacteremia by the deep learning model, and the secondary outcome was the feature explainability of the model by occlusion analysis. RESULTS Out of the 36,023 patients in the data set, 720 cases of bacteremia were included. Our deep learning–based model showed an AUROC of 0.97 (95% CI 0.974-0.981) and an AUPRC of 0.17 (95% CI 0.147-0.203) for detecting bacteremia in surgical in-patients. For predicting bacteremia within the previous 24-hour period, the AUROC and AUPRC values were 0.93 and 0.15, respectively. Occlusion analysis showed that vital signs and laboratory measurements (eg, kidney function test and white blood cell group) were the most important variables for detecting bacteremia. CONCLUSIONS A deep learning model based on time series electronic health records data had a high detective ability for bacteremia for surgical in-patients in the general ward and the ICU. The model may be able to assist clinicians in evaluating infection among in-patients, ordering blood cultures, and prescribing antibiotics with real-time monitoring.


2021 ◽  
Author(s):  
So Jin Park ◽  
Tae Hoon Ko ◽  
Chan Kee Park ◽  
Yong Chan Kim ◽  
In Young Choi

BACKGROUND Pathologic myopia is a disease that causes vision impairment and blindness. Therefore, it is essential to diagnose it in a timely manner. However, there is no standardized definition for pathologic myopia, and the interpretation of pathologic myopia by optical coherence tomography is subjective and requires considerable time and money. Therefore, there is a need for a diagnostic tool that can diagnose pathologic myopia in patients automatically and in a timely manner. OBJECTIVE The purpose of this study was to develop an algorithm that uses optical coherence tomography (OCT) to automatically diagnose patients with pathologic myopia who require treatment. METHODS This study was conducted using patient data from patients who underwent optical coherence tomography tests at the Ophthalmology Department of Incheon St. Mary's Hospital and Seoul St. Mary's Hospital from January 2012 to May 2020. To automatically diagnose pathologic myopia, a deep learning model was developed using 3D optical coherence tomography images. A model was developed using transfer learning based on four pre-trained convolutional neural networks (ResNet18, ResNext50, EfficientNetB0, EfficientNetB4). The performance of each model was evaluated and compared based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). RESULTS Four models developed using test datasets were evaluated and compared. The model based on EfficientNetB4 showed the best performance (95% accuracy, 93% sensitivity, 96% specificity, and 98% AUROC). CONCLUSIONS In our study, we developed a deep learning model that can automatically diagnose pathologic myopia without segmentation of 3D optical coherence tomography images. Our deep learning model based on EfficientNetB4 demonstrated excellent performance in identifying pathologic myopia.


Author(s):  
Meenakshi Srivastava

IoT-based communication between medical devices has encouraged the healthcare industry to use automated systems which provide effective insight from the massive amount of gathered data. AI and machine learning have played a major role in the design of such systems. Accuracy and validation are considered, since copious training data is required in a neural network (NN)-based deep learning model. This is hardly feasible in medical research, because the size of data sets is constrained by complexity and high cost experiments. The availability of limited sample data validation of NN remains a concern. The prediction of outcomes on a NN trained on a smaller data set cannot guarantee performance and exhibits unstable behaviors. Surrogate data-based validation of NN can be viewed as a solution. In the current chapter, the classification of breast tissue data by a NN model has been detailed. In the absence of a huge data set, a surrogate data-based validation approach has been applied. The discussed study can be applied for predictive modelling for applications described by small data sets.


10.2196/19512 ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. e19512
Author(s):  
Hyung Jun Park ◽  
Dae Yon Jung ◽  
Wonjun Ji ◽  
Chang-Min Choi

Background Detecting bacteremia among surgical in-patients is more obscure than other patients due to the inflammatory condition caused by the surgery. The previous criteria such as systemic inflammatory response syndrome or Sepsis-3 are not available for use in general wards, and thus, many clinicians usually rely on practical senses to diagnose postoperative infection. Objective This study aims to evaluate the performance of continuous monitoring with a deep learning model for early detection of bacteremia for surgical in-patients in the general ward and the intensive care unit (ICU). Methods In this retrospective cohort study, we included 36,023 consecutive patients who underwent general surgery between October and December 2017 at a tertiary referral hospital in South Korea. The primary outcome was the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) for detecting bacteremia by the deep learning model, and the secondary outcome was the feature explainability of the model by occlusion analysis. Results Out of the 36,023 patients in the data set, 720 cases of bacteremia were included. Our deep learning–based model showed an AUROC of 0.97 (95% CI 0.974-0.981) and an AUPRC of 0.17 (95% CI 0.147-0.203) for detecting bacteremia in surgical in-patients. For predicting bacteremia within the previous 24-hour period, the AUROC and AUPRC values were 0.93 and 0.15, respectively. Occlusion analysis showed that vital signs and laboratory measurements (eg, kidney function test and white blood cell group) were the most important variables for detecting bacteremia. Conclusions A deep learning model based on time series electronic health records data had a high detective ability for bacteremia for surgical in-patients in the general ward and the ICU. The model may be able to assist clinicians in evaluating infection among in-patients, ordering blood cultures, and prescribing antibiotics with real-time monitoring.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8536-8536
Author(s):  
Gouji Toyokawa ◽  
Fahdi Kanavati ◽  
Seiya Momosaki ◽  
Kengo Tateishi ◽  
Hiroaki Takeoka ◽  
...  

8536 Background: Lung cancer is the leading cause of cancer-related death in many countries, and its prognosis remains unsatisfactory. Since treatment approaches differ substantially based on the subtype, such as adenocarcinoma (ADC), squamous cell carcinoma (SCC) and small cell lung cancer (SCLC), an accurate histopathological diagnosis is of great importance. However, if the specimen is solely composed of poorly differentiated cancer cells, distinguishing between histological subtypes can be difficult. The present study developed a deep learning model to classify lung cancer subtypes from whole slide images (WSIs) of transbronchial lung biopsy (TBLB) specimens, in particular with the aim of using this model to evaluate a challenging test set of indeterminate cases. Methods: Our deep learning model consisted of two separately trained components: a convolutional neural network tile classifier and a recurrent neural network tile aggregator for the WSI diagnosis. We used a training set consisting of 638 WSIs of TBLB specimens to train a deep learning model to classify lung cancer subtypes (ADC, SCC and SCLC) and non-neoplastic lesions. The training set consisted of 593 WSIs for which the diagnosis had been determined by pathologists based on the visual inspection of Hematoxylin-Eosin (HE) slides and of 45 WSIs of indeterminate cases (64 ADCs and 19 SCCs). We then evaluated the models using five independent test sets. For each test set, we computed the receiver operator curve (ROC) area under the curve (AUC). Results: We applied the model to an indeterminate test set of WSIs obtained from TBLB specimens that pathologists had not been able to conclusively diagnose by examining the HE-stained specimens alone. Overall, the model achieved ROC AUCs of 0.993 (confidence interval [CI] 0.971-1.0) and 0.996 (0.981-1.0) for ADC and SCC, respectively. We further evaluated the model using five independent test sets consisting of both TBLB and surgically resected lung specimens (combined total of 2490 WSIs) and obtained highly promising results with ROC AUCs ranging from 0.94 to 0.99. Conclusions: In this study, we demonstrated that a deep learning model could be trained to predict lung cancer subtypes in indeterminate TBLB specimens. The extremely promising results obtained show that if deployed in clinical practice, a deep learning model that is capable of aiding pathologists in diagnosing indeterminate cases would be extremely beneficial as it would allow a diagnosis to be obtained sooner and reduce costs that would result from further investigations.


2021 ◽  
Author(s):  
Ying Hou ◽  
Yi-Hong Zhang ◽  
Jie Bao ◽  
Mei-Ling Bao ◽  
Guang Yang ◽  
...  

Abstract Purpose: A balance between preserving urinary continence and achievement of negative margins is of clinical relevance while implementary difficulty. Preoperatively accurate detection of prostate cancer (PCa) extracapsular extension (ECE) is thus crucial for determining appropriate treatment options. We aimed to develop and clinically validate an artificial intelligence (AI)-assisted tool for the detection of ECE in patients with PCa using multiparametric MRI. Methods: 849 patients with localized PCa underwent multiparametric MRI before radical prostatectomy were retrospectively included from two medical centers. The AI tool was built on a ResNeXt network embedded with a spatial attention map of experts’ prior knowledges (PAGNet) from 596 training data sets. The tool was validated in 150 internal and 103 external data sets, respectively; and its clinical applicability was compared with expert-based interpretation and AI-expert interaction.Results: An index PAGNet model using a single-slice image yielded the highest areas under the receiver operating characteristic curve (AUC) of 0.857 (95% confidence interval [CI], 0.827-0.884), 0.807 (95% CI, 0.735-0.867) and 0.728 (95% CI, 0.631-0.811) in the training, internal test and external test cohorts, compared to the conventional ResNeXt networks. For experts, the inter-reader agreement was observed in only 437/849 (51.5%) patients with a Kappa value 0.343. And the performance of two experts (AUC, 0.632 to 0.741 vs 0.715 to 0.857) was lower (paired comparison, all p values < 0.05) than that of AI assessment. When expert’ interpretations were adjusted by the AI assessments, the performance of both two experts was improved.Conclusion: Our AI tool, showing improved accuracy, offers a promising alternative to human experts for imaging staging of PCa ECE using multiparametric MRI.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shu-Hui Wang ◽  
Xin-Jun Han ◽  
Jing Du ◽  
Zhen-Chang Wang ◽  
Chunwang Yuan ◽  
...  

Abstract Background The imaging features of focal liver lesions (FLLs) are diverse and complex. Diagnosing FLLs with imaging alone remains challenging. We developed and validated an interpretable deep learning model for the classification of seven categories of FLLs on multisequence MRI and compared the differential diagnosis between the proposed model and radiologists. Methods In all, 557 lesions examined by multisequence MRI were utilised in this retrospective study and divided into training–validation (n = 444) and test (n = 113) datasets. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the performance of the model. The accuracy and confusion matrix of the model and individual radiologists were compared. Saliency maps were generated to highlight the activation region based on the model perspective. Results The AUC of the two- and seven-way classifications of the model were 0.969 (95% CI 0.944–0.994) and from 0.919 (95% CI 0.857–0.980) to 0.999 (95% CI 0.996–1.000), respectively. The model accuracy (79.6%) of the seven-way classification was higher than that of the radiology residents (66.4%, p = 0.035) and general radiologists (73.5%, p = 0.346) but lower than that of the academic radiologists (85.4%, p = 0.291). Confusion matrices showed the sources of diagnostic errors for the model and individual radiologists for each disease. Saliency maps detected the activation regions associated with each predicted class. Conclusion This interpretable deep learning model showed high diagnostic performance in the differentiation of FLLs on multisequence MRI. The analysis principle contributing to the predictions can be explained via saliency maps.


2020 ◽  
Vol 39 (10) ◽  
pp. 734-741
Author(s):  
Sébastien Guillon ◽  
Frédéric Joncour ◽  
Pierre-Emmanuel Barrallon ◽  
Laurent Castanié

We propose new metrics to measure the performance of a deep learning model applied to seismic interpretation tasks such as fault and horizon extraction. Faults and horizons are thin geologic boundaries (1 pixel thick on the image) for which a small prediction error could lead to inappropriately large variations in common metrics (precision, recall, and intersection over union). Through two examples, we show how classical metrics could fail to indicate the true quality of fault or horizon extraction. Measuring the accuracy of reconstruction of thin objects or boundaries requires introducing a tolerance distance between ground truth and prediction images to manage the uncertainties inherent in their delineation. We therefore adapt our metrics by introducing a tolerance function and illustrate their ability to manage uncertainties in seismic interpretation. We compare classical and new metrics through different examples and demonstrate the robustness of our metrics. Finally, we show on a 3D West African data set how our metrics are used to tune an optimal deep learning model.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2556
Author(s):  
Liyang Wang ◽  
Yao Mu ◽  
Jing Zhao ◽  
Xiaoya Wang ◽  
Huilian Che

The clinical symptoms of prediabetes are mild and easy to overlook, but prediabetes may develop into diabetes if early intervention is not performed. In this study, a deep learning model—referred to as IGRNet—is developed to effectively detect and diagnose prediabetes in a non-invasive, real-time manner using a 12-lead electrocardiogram (ECG) lasting 5 s. After searching for an appropriate activation function, we compared two mainstream deep neural networks (AlexNet and GoogLeNet) and three traditional machine learning algorithms to verify the superiority of our method. The diagnostic accuracy of IGRNet is 0.781, and the area under the receiver operating characteristic curve (AUC) is 0.777 after testing on the independent test set including mixed group. Furthermore, the accuracy and AUC are 0.856 and 0.825, respectively, in the normal-weight-range test set. The experimental results indicate that IGRNet diagnoses prediabetes with high accuracy using ECGs, outperforming existing other machine learning methods; this suggests its potential for application in clinical practice as a non-invasive, prediabetes diagnosis technology.


Sign in / Sign up

Export Citation Format

Share Document