scholarly journals Detection of Bacteremia in Surgical In-Patients Using Recurrent Neural Network Based on Time Series Records: Development and Validation Study (Preprint)

2020 ◽  
Author(s):  
Hyung Jun Park ◽  
Dae Yon Jung ◽  
Wonjun Ji ◽  
Chang-Min Choi

BACKGROUND Detecting bacteremia among surgical in-patients is more obscure than other patients due to the inflammatory condition caused by the surgery. The previous criteria such as systemic inflammatory response syndrome or Sepsis-3 are not available for use in general wards, and thus, many clinicians usually rely on practical senses to diagnose postoperative infection. OBJECTIVE This study aims to evaluate the performance of continuous monitoring with a deep learning model for early detection of bacteremia for surgical in-patients in the general ward and the intensive care unit (ICU). METHODS In this retrospective cohort study, we included 36,023 consecutive patients who underwent general surgery between October and December 2017 at a tertiary referral hospital in South Korea. The primary outcome was the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) for detecting bacteremia by the deep learning model, and the secondary outcome was the feature explainability of the model by occlusion analysis. RESULTS Out of the 36,023 patients in the data set, 720 cases of bacteremia were included. Our deep learning–based model showed an AUROC of 0.97 (95% CI 0.974-0.981) and an AUPRC of 0.17 (95% CI 0.147-0.203) for detecting bacteremia in surgical in-patients. For predicting bacteremia within the previous 24-hour period, the AUROC and AUPRC values were 0.93 and 0.15, respectively. Occlusion analysis showed that vital signs and laboratory measurements (eg, kidney function test and white blood cell group) were the most important variables for detecting bacteremia. CONCLUSIONS A deep learning model based on time series electronic health records data had a high detective ability for bacteremia for surgical in-patients in the general ward and the ICU. The model may be able to assist clinicians in evaluating infection among in-patients, ordering blood cultures, and prescribing antibiotics with real-time monitoring.

10.2196/19512 ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. e19512
Author(s):  
Hyung Jun Park ◽  
Dae Yon Jung ◽  
Wonjun Ji ◽  
Chang-Min Choi

Background Detecting bacteremia among surgical in-patients is more obscure than other patients due to the inflammatory condition caused by the surgery. The previous criteria such as systemic inflammatory response syndrome or Sepsis-3 are not available for use in general wards, and thus, many clinicians usually rely on practical senses to diagnose postoperative infection. Objective This study aims to evaluate the performance of continuous monitoring with a deep learning model for early detection of bacteremia for surgical in-patients in the general ward and the intensive care unit (ICU). Methods In this retrospective cohort study, we included 36,023 consecutive patients who underwent general surgery between October and December 2017 at a tertiary referral hospital in South Korea. The primary outcome was the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) for detecting bacteremia by the deep learning model, and the secondary outcome was the feature explainability of the model by occlusion analysis. Results Out of the 36,023 patients in the data set, 720 cases of bacteremia were included. Our deep learning–based model showed an AUROC of 0.97 (95% CI 0.974-0.981) and an AUPRC of 0.17 (95% CI 0.147-0.203) for detecting bacteremia in surgical in-patients. For predicting bacteremia within the previous 24-hour period, the AUROC and AUPRC values were 0.93 and 0.15, respectively. Occlusion analysis showed that vital signs and laboratory measurements (eg, kidney function test and white blood cell group) were the most important variables for detecting bacteremia. Conclusions A deep learning model based on time series electronic health records data had a high detective ability for bacteremia for surgical in-patients in the general ward and the ICU. The model may be able to assist clinicians in evaluating infection among in-patients, ordering blood cultures, and prescribing antibiotics with real-time monitoring.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Jose M. Castillo T. ◽  
Muhammad Arif ◽  
Martijn P. A. Starmans ◽  
Wiro J. Niessen ◽  
Chris H. Bangma ◽  
...  

The computer-aided analysis of prostate multiparametric MRI (mpMRI) could improve significant-prostate-cancer (PCa) detection. Various deep-learning- and radiomics-based methods for significant-PCa segmentation or classification have been reported in the literature. To be able to assess the generalizability of the performance of these methods, using various external data sets is crucial. While both deep-learning and radiomics approaches have been compared based on the same data set of one center, the comparison of the performances of both approaches on various data sets from different centers and different scanners is lacking. The goal of this study was to compare the performance of a deep-learning model with the performance of a radiomics model for the significant-PCa diagnosis of the cohorts of various patients. We included the data from two consecutive patient cohorts from our own center (n = 371 patients), and two external sets of which one was a publicly available patient cohort (n = 195 patients) and the other contained data from patients from two hospitals (n = 79 patients). Using multiparametric MRI (mpMRI), the radiologist tumor delineations and pathology reports were collected for all patients. During training, one of our patient cohorts (n = 271 patients) was used for both the deep-learning- and radiomics-model development, and the three remaining cohorts (n = 374 patients) were kept as unseen test sets. The performances of the models were assessed in terms of their area under the receiver-operating-characteristic curve (AUC). Whereas the internal cross-validation showed a higher AUC for the deep-learning approach, the radiomics model obtained AUCs of 0.88, 0.91 and 0.65 on the independent test sets compared to AUCs of 0.70, 0.73 and 0.44 for the deep-learning model. Our radiomics model that was based on delineated regions resulted in a more accurate tool for significant-PCa classification in the three unseen test sets when compared to a fully automated deep-learning model.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Harjanto Prabowo ◽  
Alam A. Hidayat ◽  
Tjeng Wawan Cenggoro ◽  
Reza Rahutomo ◽  
Kartika Purwandari ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shu-Hui Wang ◽  
Xin-Jun Han ◽  
Jing Du ◽  
Zhen-Chang Wang ◽  
Chunwang Yuan ◽  
...  

Abstract Background The imaging features of focal liver lesions (FLLs) are diverse and complex. Diagnosing FLLs with imaging alone remains challenging. We developed and validated an interpretable deep learning model for the classification of seven categories of FLLs on multisequence MRI and compared the differential diagnosis between the proposed model and radiologists. Methods In all, 557 lesions examined by multisequence MRI were utilised in this retrospective study and divided into training–validation (n = 444) and test (n = 113) datasets. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the performance of the model. The accuracy and confusion matrix of the model and individual radiologists were compared. Saliency maps were generated to highlight the activation region based on the model perspective. Results The AUC of the two- and seven-way classifications of the model were 0.969 (95% CI 0.944–0.994) and from 0.919 (95% CI 0.857–0.980) to 0.999 (95% CI 0.996–1.000), respectively. The model accuracy (79.6%) of the seven-way classification was higher than that of the radiology residents (66.4%, p = 0.035) and general radiologists (73.5%, p = 0.346) but lower than that of the academic radiologists (85.4%, p = 0.291). Confusion matrices showed the sources of diagnostic errors for the model and individual radiologists for each disease. Saliency maps detected the activation regions associated with each predicted class. Conclusion This interpretable deep learning model showed high diagnostic performance in the differentiation of FLLs on multisequence MRI. The analysis principle contributing to the predictions can be explained via saliency maps.


2020 ◽  
Vol 39 (10) ◽  
pp. 734-741
Author(s):  
Sébastien Guillon ◽  
Frédéric Joncour ◽  
Pierre-Emmanuel Barrallon ◽  
Laurent Castanié

We propose new metrics to measure the performance of a deep learning model applied to seismic interpretation tasks such as fault and horizon extraction. Faults and horizons are thin geologic boundaries (1 pixel thick on the image) for which a small prediction error could lead to inappropriately large variations in common metrics (precision, recall, and intersection over union). Through two examples, we show how classical metrics could fail to indicate the true quality of fault or horizon extraction. Measuring the accuracy of reconstruction of thin objects or boundaries requires introducing a tolerance distance between ground truth and prediction images to manage the uncertainties inherent in their delineation. We therefore adapt our metrics by introducing a tolerance function and illustrate their ability to manage uncertainties in seismic interpretation. We compare classical and new metrics through different examples and demonstrate the robustness of our metrics. Finally, we show on a 3D West African data set how our metrics are used to tune an optimal deep learning model.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2556
Author(s):  
Liyang Wang ◽  
Yao Mu ◽  
Jing Zhao ◽  
Xiaoya Wang ◽  
Huilian Che

The clinical symptoms of prediabetes are mild and easy to overlook, but prediabetes may develop into diabetes if early intervention is not performed. In this study, a deep learning model—referred to as IGRNet—is developed to effectively detect and diagnose prediabetes in a non-invasive, real-time manner using a 12-lead electrocardiogram (ECG) lasting 5 s. After searching for an appropriate activation function, we compared two mainstream deep neural networks (AlexNet and GoogLeNet) and three traditional machine learning algorithms to verify the superiority of our method. The diagnostic accuracy of IGRNet is 0.781, and the area under the receiver operating characteristic curve (AUC) is 0.777 after testing on the independent test set including mixed group. Furthermore, the accuracy and AUC are 0.856 and 0.825, respectively, in the normal-weight-range test set. The experimental results indicate that IGRNet diagnoses prediabetes with high accuracy using ECGs, outperforming existing other machine learning methods; this suggests its potential for application in clinical practice as a non-invasive, prediabetes diagnosis technology.


2020 ◽  
Author(s):  
Sebastian Bomberg ◽  
Neha Goel

<p>The presented work focuses on disaster risk management of cities which are prone to natural hazards. Based on aerial imagery captured by drones of regions in Caribbean islands, we show how to process and automatically identify roof material of individual structures using a deep learning model. Deep learning refers to a machine learning technique using deep artificial neural networks. Unlike other techniques, deep learning does not necessarily require feature engineering but may process raw data directly. The outcome of this assessment can be used for steering risk mitigations measures, creating risk hazard maps or advising municipal bodies or help organizations on investing their resources in rebuilding reinforcements. Data at hand consists of images in BigTIFF format and GeoJSON files including the building footprint, unique building ID and roof material labels. We demonstrate how to use MATLAB and its toolboxes for processing large image files that do not fit in computer memory. Based on this, we perform the training of a deep learning model to classify roof material present in the images. We achieve this by subjecting a pretrained ResNet-18 neural network to transfer learning. Training is further accelerated by means of GPU computing. The accuracy computed from a validation data set achieved by this baseline model is 74%. Further tuning of hyperparameters is expected to improve accuracy significantly.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253239
Author(s):  
Yiyun Chen ◽  
Craig S. Roberts ◽  
Wanmei Ou ◽  
Tanaz Petigara ◽  
Gregory V. Goldmacher ◽  
...  

Background The World Health Organization (WHO)-defined radiological pneumonia is a preferred endpoint in pneumococcal vaccine efficacy and effectiveness studies in children. Automating the WHO methodology may support more widespread application of this endpoint. Methods We trained a deep learning model to classify pneumonia CXRs in children using the World Health Organization (WHO)’s standardized methodology. The model was pretrained on CheXpert, a dataset containing 224,316 adult CXRs, and fine-tuned on PERCH, a pediatric dataset containing 4,172 CXRs. The model was then tested on two pediatric CXR datasets released by WHO. We also compared the model’s performance to that of radiologists and pediatricians. Results The average area under the receiver operating characteristic curve (AUC) for primary endpoint pneumonia (PEP) across 10-fold validation of PERCH images was 0.928; average AUC after testing on WHO images was 0.977. The model’s classification performance was better on test images with high inter-observer agreement; however, the model still outperformed human assessments in AUC and precision-recall spaces on low agreement images. Conclusion A deep learning model can classify pneumonia CXR images in children at a performance comparable to human readers. Our method lays a strong foundation for the potential inclusion of computer-aided readings of pediatric CXRs in vaccine trials and epidemiology studies.


Sign in / Sign up

Export Citation Format

Share Document