scholarly journals Synthesis Chemistry and Properties of Ni Catalysts Fabricated on SiC@Al2O3 Core-Shell Microstructure for Methane Steam Reforming

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 391
Author(s):  
Hyunju Lee ◽  
Doohwan Lee

Heat and mass transport properties of heterogeneous catalysts have significant effects on their overall performance in many industrial chemical reaction processes. In this work, a new catalyst micro-architecture consisting of a highly thermally conductive SiC core with a high-surface-area metal-oxide shell is prepared through a charge-interaction-induced heterogeneous hydrothermal construction of SiC@NiAl-LDH core-shell microstructures. Calcination and reduction of the SiC@NiAl-LDH core-shell results in the formation of Ni nanoparticles (NPs) dispersed on SiC@Al2O3, referred to as Ni/SiC@Al2O3 core-shell catalyst. The Ni/SiC@Al2O3 exhibit petal-like shell morphology consisting of a number of Al2O3 platelets with their planes oriented perpendicular to the surface, which is beneficial for improved mass transfer. For an extended period of methane-stream-reforming reaction, the Ni/SiC@Al2O3 core-shell structure remained stable without any significant degradation at the core/shell interface. However, the catalyst suffered from coking and sintering likely associated with the relatively large Ni particle sizes and the low Al2O3 content. The synthesis procedure and chemistry for construction of supported Ni catalyst on the core-shell microstructure of the highly thermal conductive SiC core, and the morphology-controlled metal-oxide shell, could provide new opportunities for various catalytic reaction processes that require high heat flux and enhanced mass transport.

Nanoscale ◽  
2019 ◽  
Vol 11 (32) ◽  
pp. 15270-15278 ◽  
Author(s):  
Pascal Rusch ◽  
Fabian Niemeyer ◽  
Denis Pluta ◽  
Björn Schremmer ◽  
Franziska Lübkemann ◽  
...  

Nanocrystal based networks are surrounded and reinforced by a continuous metal oxide shell.


2019 ◽  
Vol 123 (10) ◽  
pp. 6018-6029 ◽  
Author(s):  
Zhaofeng Zhai ◽  
Nan Huang ◽  
Bing Yang ◽  
Chun Wang ◽  
Lusheng Liu ◽  
...  

2010 ◽  
Vol 160-162 ◽  
pp. 1582-1587 ◽  
Author(s):  
Qing Chang ◽  
Hong Qiang Ru ◽  
Dao Lun Chen

Pure hydroxyapatite (HA) is brittle and it cannot be directly used for the load-bearing biomedical applications. Aim of this paper was to present a new iron-containing hydroxyapatite/titanium composites synthesized via pressureless sintering at a relatively low temperature of 1000°C using nano-sized HA powders and Ti-33%Fe mixed powders. The microstructure and composition of the new type composites were evaluated. The results showed that the uniformly distributed reinforcing particles had a unique and favorable core/shell microstructure after sintering that consisted of outer titanium and inner iron. The mechanism for the formation of the core/shell structure was discussed. The addition of iron reduced the decomposition rate of HA and the interaction between HA and titanium.


2012 ◽  
Vol 486 ◽  
pp. 65-69
Author(s):  
Jun Hu ◽  
Ai Min Chen

NiFe/NiFe2O4 core-shell bimagnetic nanocomposite particles were successfully synthesized by colloidal chemical method combined with H2 reduction. The whole structural evolution process has been well studied through analysis of X-ray diffraction patterns and Infrared spectra. It has been found that FeNi alloy concentrated in the ferrite phase. The core/shell structure, a FeNi alloy core surrounded by NiFe2O4 spinel oxide shell were verified by X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The influence of post H2 heat treatment temperature on nanoparticles was investigated. The core-shell NiFe/ NiFe2O4 nanoparticles was about 100 nm after reduced at 727 K, The powders exhibited paramagnetic properties and the magnetization was 29.9 emu·g-1.


2016 ◽  
Vol 36 (4) ◽  
pp. 1009-1016 ◽  
Author(s):  
Jurij Koruza ◽  
Virginia Rojas ◽  
Leopoldo Molina-Luna ◽  
Ulrike Kunz ◽  
Michael Duerrschnabel ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 3-13
Author(s):  
Erin A. Jenrette ◽  
Monique J. Farrell ◽  
Jasmin A. Flowers ◽  
Aswini K. Pradhan

A highly sensitive biosensing platform comprised of CdSe-ZnO core–shell nanostructures for targeted applications in protein detection is demonstrated. This innovative technique uses a microwave-assisted thermal decomposition method to produce a rapid, less hazardous, and user-friendly procedure to synthesize a semiconductor core surrounded by nanometer-thick metal oxide shells. The benefit of using a metal oxide shell includes mitigating the toxicity of the CdSe core, thus increasing its biocompatibility and minimizing its photochemical corrosion and oxidation. We present a simple one-pot microwave-assisted protocol for the formation of CdSe-ZnO core–shell quantum dots (QDs). These QDs optimize the recognition limit of bovine serum albumin (BSA) protein through a spectral signal at a considerably low concentration (2.5 × 10−6 M), thus demonstrating its potential to become a highly effective surface-plasmon-enhanced Raman spectroscopy (SERS)-like sensing platform. We report a QD material that can mimic a strong SERS-like behavior due to charge transfer affecting the local electric field.


2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Christian Zambrzycki ◽  
Runbang Shao ◽  
Archismita Misra ◽  
Carsten Streb ◽  
Ulrich Herr ◽  
...  

Core-shell materials are promising functional materials for fundamental research and industrial application, as their properties can be adapted for specific applications. In particular, particles featuring iron or iron oxide as core material are relevant since they combine magnetic and catalytic properties. The addition of an SiO2 shell around the core particles introduces additional design aspects, such as a pore structure and surface functionalization. Herein, we describe the synthesis and application of iron-based core-shell nanoparticles for two different fields of research that is heterogeneous catalysis and water purification. The iron-based core shell materials were characterized by transmission electron microscopy, as well as N2-physisorption, X-ray diffraction, and vibrating-sample magnetometer measurements in order to correlate their properties with the performance in the target applications. Investigations of these materials in CO2 hydrogenation and water purification show their versatility and applicability in different fields of research and application, after suitable individual functionalization of the core-shell precursor. For design and application of magnetically separable particles, the SiO2 shell is surface-functionalized with an ionic liquid in order to bind water pollutants selectively. The core requires no functionalization, as it provides suitable magnetic properties in the as-made state. For catalytic application in synthesis gas reactions, the SiO2-stabilized core nanoparticles are reductively functionalized to provide the catalytically active metallic iron sites. Therefore, Fe@SiO2 core-shell nanostructures are shown to provide platform materials for various fields of application, after a specific functionalization.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 359
Author(s):  
Francesco Ruffino

Bimetallic nanoparticles show novel electronic, optical, catalytic or photocatalytic properties different from those of monometallic nanoparticles and arising from the combination of the properties related to the presence of two individual metals but also from the synergy between the two metals. In this regard, bimetallic nanoparticles find applications in several technological areas ranging from energy production and storage to sensing. Often, these applications are based on optical properties of the bimetallic nanoparticles, for example, in plasmonic solar cells or in surface-enhanced Raman spectroscopy-based sensors. Hence, in these applications, the specific interaction between the bimetallic nanoparticles and the electromagnetic radiation plays the dominant role: properties as localized surface plasmon resonances and light-scattering efficiency are determined by the structure and shape of the bimetallic nanoparticles. In particular, for example, concerning core-shell bimetallic nanoparticles, the optical properties are strongly affected by the core/shell sizes ratio. On the basis of these considerations, in the present work, the Mie theory is used to analyze the light-scattering properties of bimetallic core–shell spherical nanoparticles (Au/Ag, AuPd, AuPt, CuAg, PdPt). By changing the core and shell sizes, calculations of the intensity of scattered light from these nanoparticles are reported in polar diagrams, and a comparison between the resulting scattering efficiencies is carried out so as to set a general framework useful to design light-scattering-based devices for desired applications.


Sign in / Sign up

Export Citation Format

Share Document