scholarly journals Effect of the Ni/Al Ratio on the Performance of NiAl2O4 Spinel-Based Catalysts for Supercritical Methylcyclohexane Catalytic Cracking

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 323
Author(s):  
Kyoung Ho Song ◽  
Soon Kwan Jeong ◽  
Byung Hun Jeong ◽  
Kwan-Young Lee ◽  
Hak Joo Kim

Supercritical methylcyclohexane cracking of NiAl2O4 spinel-based catalysts with varying Ni/Al deficiencies was investigated. Thus, catalysts with Ni content of 10–50 wt.% were prepared by typical co-precipitation methods. The calcined, reduced, and spent catalysts were characterized by X-ray diffraction, O2 temperature-programmed oxidation, NH3 temperature-programmed desorption, N2 physisorption, O2 chemisorption, scanning and transmission electron microscopy, and X-ray fluorescence. The performance and physicochemical properties of the reference stoichiometric Ni3Al7 catalyst differed significantly from those of the other catalysts. Indeed, the Ni-deficient Ni1Al9 catalyst led to the formation of large Ni particles (diameter: 20 nm) and abundant strong acid sites, without spinel structure formation, owing to the excess Al. These acted with sufficient environment and structure to form the coke precursor nickel carbide, resulting in a pressure drop within 17 min. On the other hand, the additional NiO linked to the NiAl2O4 spinel structure of the Al-deficient Ni5Al5 catalyst formed small crystals (10 nm), owing to the excess Ni, and displayed improved Ni dispersion. Thus, dehydrogenation proceeded effectively, thereby improving the resistance to coke formation. This catalytic behavior further demonstrated the remarkable activity and stability of this catalyst under mild conditions (450 °C and 4 Mpa).

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Son Tung Pham ◽  
Manh B. Nguyen ◽  
Giang H. Le ◽  
Trang T. T. Pham ◽  
Trang T. T. Quan ◽  
...  

Al-incorporated SBA-15 samples (xAl/SBA-15) were successfully prepared by “atomic implantation” method. The samples were characterized by X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), N2 adsorption-desorption isotherms (BET), and temperature-programmed desorption (NH3-TPD). In this catalyst, metal oxide species were highly dispersed on the SBA-15 surface and existed as isolated atoms. It was shown that the Al incorporation lead to the formation of medium and strong acid sites. The catalytic activity and selectivity were tested in a mild hydrothermal process for degradation of cotton cellulose to 5-hydroxymethyl furfural (5-HMF). A cellulose conversion of 68.5% and 5-HMF selectivity of 62.1% after 2 h of reaction at 170°C were achieved. The very high 5-HMF yield (42.57%) obtained in this paper is much higher than that was reported in the literature.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 270 ◽  
Author(s):  
Caroline Andrew Swamidoss ◽  
Mahshab Sheraz ◽  
Ali Anus ◽  
Sangjae Jeong ◽  
Young-Kwon Park ◽  
...  

This paper evaluated the effect of calcination temperature and the use of Mg/Al2O3 on the decomposition of HFC-134a. Two commercialized catalysts, Al2O3 and Mg/Al2O3, were calcined at two different temperatures (500 and 650 °C) and their physicochemical characteristics were examined by X-ray diffraction, Brunauer–Emmett–Teller analysis, and the temperature-programed desorption of ammonia and carbon dioxide analysis. The results show that, in comparison to Al2O3, 5% Mg/Al2O3 exhibited a larger Brunauer–Emmett–Teller surface area and higher acidity. The relative amount of strong acid sites of the catalysts decreased with increasing calcination temperature. Although a more than 90% decomposition rate of HFC-134a was achieved over all catalysts during the sequential decomposition test of HFC-134a using a vertical plug flow reactor connected directly to a gas chromatography/mass spectrometry system, the lifetime of the catalyst differed according to the catalyst type. Compared to Al2O3, Mg/Al2O3 revealed a longer lifetime and less coke formation due to the increased Brunauer–Emmett–Teller surface area and weak Lewis acid sites and basic sites arising from Mg impregnation. Higher temperature calcination extended the catalyst lifetime with the formation of less coke due to the smaller number of strong acid sites, which can lead to severe coke formation. A valuable by-product, trifluoroethylene, was formed as a result of the decomposition. Based on the experimental results, a reaction is proposed which reasonably explains the decomposition reaction.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 748 ◽  
Author(s):  
Gheorghita Mitran ◽  
Florentina Neaţu ◽  
Octavian Pavel ◽  
Mihaela Trandafir ◽  
Mihaela Florea

This study deals with the behavior of molybdenum–vanadium (Mo/V) mixed oxides catalysts in both disproportionation and selective oxidation of toluene. Samples containing different Mo/V ratios were prepared by a modified method using tetradecyltrimethylammonium bromide and acetic acid. The catalysts were characterized using several techniques: nitrogen adsorption–desorption isotherms, X-Ray diffraction (XRD), ammonia temperature-programmed desorption (TPD-NH3), temperature-programmed reduction by hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier-transform infrared-spectroscopy (FTIR) and ultraviolet-visible spectroscopies (UV–VIS). The XRD results evidenced the presence of orthorhombic α-MoO3 and V2O5 phases, as well as monoclinic β-MoO3 and V2MoO8 phases, their abundance depending on the Mo to V ratio, while the TPD-NH3 emphasized that, the total amount of the acid sites diminished with the increase of the Mo loading. The TPR investigations indicated that the samples with higher Mo/V ratio possess a higher reducibility. The main findings of this study led to the conclusion that the presence of strong acid sites afforded a high conversion in toluene disproportionation (Mo/V = 1), while a higher reducibility is a prerequisite to accomplishing high conversion in toluene oxidation (Mo/V = 2). The catalyst with Mo/V = 1 acquires the best yield to xylenes from the toluene disproportionation reaction, while the catalyst with Mo/V = 0.33 presents the highest yield to benzaldehyde.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1283
Author(s):  
Duck-kyu Oh ◽  
Young-Jae Lee ◽  
Kwan-Young Lee ◽  
Jong-Soo Park

Compared with Pt/TiO2, tungsten-loaded Pt–W/TiO2 catalysts exhibit improved activity for NO and soot oxidation. Using catalysts prepared by an incipient wetness method, the tungsten loading effect was investigated using Brunauer–Emmett–Teller surface areas, X-ray diffraction, transmission electron microscopy (TEM), CO pulse chemisorption, H2 temperature-programmed reduction, NH3 temperature-programmed desorption (NH3-TPD), and pyridine Fourier transform infrared (FT-IR) spectroscopy. Loading tungsten on the Pt/TiO2 catalyst reduced the platinum particle size, as revealed in TEM images. CO pulse chemisorption showed that platinum was covered with tungsten and the dispersion of platinum decreased when 5 wt.% or more of tungsten was loaded. The NH3-TPD and pyridine-FT-IR results demonstrated that the number of strong acid sites and Brønsted acid sites in the catalyst were increased by the presence of tungsten. Therefore, a catalyst containing an appropriate amount of tungsten increased the dispersion of platinum, thereby increasing the number of active sites for NO and soot oxidation, and increased the acidity of the catalyst, thereby increasing the activity of soot oxidation by NO2


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 400
Author(s):  
Xiaohua Cao ◽  
Jichang Lu ◽  
Yutong Zhao ◽  
Rui Tian ◽  
Wenjun Zhang ◽  
...  

Praseodymium (Pr)-promoted MCM-41 catalyst was investigated for the catalytic decomposition of methyl mercaptan (CH3SH). Various characterization techniques, such as X-ray diffraction (XRD), N2 adsorption–desorption, temperature-programmed desorption of ammonia (NH3-TPD) and carbon dioxide (CO2-TPD), hydrogen temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectrometer (XPS), were carried out to analyze the physicochemical properties of material. XPS characterization results showed that praseodymium was presented on the modified catalyst in the form of praseodymium oxide species, which can react with coke deposit to prolong the catalytic stability until 120 h. Meanwhile, the strong acid sites were proved to be the main active center over the 10% Pr/MCM-41 catalyst by NH3-TPD results during the catalytic elimination of methyl mercaptan. The possible reaction mechanism was proposed by analyzing the product distribution results. The final products were mainly small-molecule products, such as methane (CH4) and hydrogen sulfide (H2S). Dimethyl sulfide (CH3SCH3) was a reaction intermediate during the reaction. Therefore, this work contributes to the understanding of the reaction process of catalytic decomposition methyl mercaptan and the design of anti-carbon deposition catalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 553
Author(s):  
Mansurbek Urol ugli Abdullaev ◽  
Sungjune Lee ◽  
Tae-Wan Kim ◽  
Chul-Ung Kim

Among the zeolitic catalysts for the ethylene-to-propylene (ETP) reaction, the SSZ-13 zeolite shows the highest catalytic activity based on both its suitable pore architecture and tunable acidity. In this study, in order to improve the propylene selectivity further, the surface of the SSZ-13 zeolite was modified with various amounts of tungsten oxide ranging from 1 wt% to 15 wt% via a simple incipient wetness impregnation method. The prepared catalysts were characterized with several analysis techniques, specifically, powder X-ray diffraction (PXRD), Raman spectroscopy, temperature-programmed reduction of hydrogen (H2-TPR), temperature-programmed desorption of ammonia (NH3-TPD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and N2 sorption, and their catalytic activities were investigated in a fixed-bed reactor system. The tungsten oxide-modified SSZ-13 catalysts demonstrated significantly improved propylene selectivity and yield compared to the parent H-SSZ-13 catalyst. For the tungsten oxide loading, 10 wt% loading showed the highest propylene yield of 64.9 wt%, which was 6.5 wt% higher than the pristine H-SSZ-13 catalyst. This can be related to not only the milder and decreased strong acid sites but also the diffusion restriction of bulky byproducts, as supported by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) observation.


2013 ◽  
Vol 295-298 ◽  
pp. 326-330 ◽  
Author(s):  
Tian Cheng Liu ◽  
Yu Jiao Guo ◽  
Ping Ning ◽  
Ming Long Yuan

Catalytic hydrolysis decomposition of dichlorodifluoromethane (CCl2F2) in the presence of water vapor and oxygen was studied over a series of solid acids using a fixed-bed reactor. Solid acid MoO3/ZrO2 displayed the highest activity, over which the conversion of CCl2F2 reached 100 % at 250 °C. CO2 was the main-product and the selectivity to CClF3 remained lower than 28.0 %. CO was not detected as by-product. The decomposition activity depended on the calcination temperature and the ZrO2 content. The activity of solid acid MoO3/ZrO2 correlates well with its specific surface area and the amount of medium-strong acid sites on the surface. To explain the reaction mechanism for CCl2F2 catalytic decomposition over MoO3/ZrO2, a surface intermediate, Osurface-CF2-Osurface is proposed.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 541 ◽  
Author(s):  
Haiping Xiao ◽  
Chaozong Dou ◽  
Hao Shi ◽  
Jinlin Ge ◽  
Li Cai

A series of poisoned catalysts with various forms and contents of sodium salts (Na2SO4 and Na2S2O7) were prepared using the wet impregnation method. The influence of sodium salts poisoned catalysts on SO2 oxidation and NO reduction was investigated. The chemical and physical features of the catalysts were characterized via NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The results showed that sodium salts poisoned catalysts led to a decrease in the denitration efficiency. The 3.6% Na2SO4 poisoned catalyst was the most severely deactivated with denitration efficiency of only 50.97% at 350 °C. The introduction of SO42− and S2O72− created new Brønsted acid sites, which facilitated the adsorption of NH3 and NO reduction. The sodium salts poisoned catalysts significantly increased the conversion of SO2–SO3. 3.6%Na2S2O7 poisoned catalyst had the strongest effect on SO2 oxidation and the catalyst achieved a maximum SO2–SO3-conversion of 1.44% at 410 °C. Characterization results showed sodium salts poisoned catalysts consumed the active ingredient and lowered the V4+/V5+ ratio, which suppressed catalytic performance. However, they increased the content of chemically adsorbed oxygen and the strength of V5+=O bonds, which promoted SO2 oxidation.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1344
Author(s):  
Tim Van Everbroeck ◽  
Radu-George Ciocarlan ◽  
Wouter Van Hoey ◽  
Myrjam Mertens ◽  
Pegie Cool

Mixed oxides were synthesized by co-precipitation of a Cu source in combination with Al, Fe or Mn corresponding salts as precursors. The materials were calcined at 600 and 1000 °C in order to crystallize the phases and to mimic the reaction conditions of the catalytic application. At 600 °C a mixed spinel structure was only formed for the combination of Cu and Mn, while at 1000 °C all the materials showed mixed spinel formation. The catalysts were applied in three-way catalysis using a reactor with a gas mixture containing CO, NO and O2. All the materials calcined at 600 °C displayed the remarkable ability to oxidize CO with O2 but also to reduce NO with CO, while the pure oxides such as CuO and MnO2 were not able to. The high catalytic activity at 600 °C was attributed to small supported CuO particles present and imperfections in the spinel structure. Calcination at 1000 °C crystallized the structure further which led to a dramatic loss in catalytic activity, although CuAl2O4 and CuFe2O4 still converted some NO. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, H2-Temperatrue Programmed Reduction (H2-TPR), N2-sorption and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX).


Sign in / Sign up

Export Citation Format

Share Document