scholarly journals Critical Role of Al Pair Sites in Methane Oxidation to Methanol on Cu-Exchanged Mordenite Zeolites

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 751
Author(s):  
Peijie Han ◽  
Zhaoxia Zhang ◽  
Zheng Chen ◽  
Jingdong Lin ◽  
Shaolong Wan ◽  
...  

Cu-exchanged aluminosilicate zeolites have been intensively studied for the selective oxidation of methane to methanol via a chemical looping manner, while the nature of active Cu-oxo species for these catalysts is still under debate. This study inquired into the effects of Al distribution on methane oxidation over Cu-exchanged aluminosilicate zeolites, which provided an effective way to discern the activity difference between mononuclear and polynuclear Cu-oxo species. Specifically, conventional Na+/Co2+ ion-exchange methods were applied to quantify isolated Al and Al pair (i.e., Al−OH−(Si−O)1–3−Al−OH) sites for three mordenite (MOR) zeolites, and a correlation was established between the reactivity of the resultant Cu-MOR catalysts and the portions of the accessible framework Al sites. These results indicated that the Cu-oxo clusters derived from the Al pair sites were more reactive than the CuOH species grafted at the isolated Al sites, which is consistent with in situ ultraviolet-visible spectroscopic characterization and density functional theory calculations. Further theoretical analysis of the first C–H bond cleavage in methane on these Cu-oxo species unveiled that stabilization of the formed methyl group was the predominant factor in determining the reactivity of methane oxidation.

2020 ◽  
Vol 7 (8) ◽  
pp. 1340-1348
Author(s):  
Zifang Cheng ◽  
Bolong Huang ◽  
Yecan Pi ◽  
Leigang Li ◽  
Qi Shao ◽  
...  

Abstract Ultrathin two-dimensional (2D) materials have attracted considerable attention for their unique physicochemical properties and promising applications; however, preparation of freestanding ultrathin 2D noble metal remains a significant challenge. Here, for the first time, we report use of a wet-chemical method to synthesize partially hydroxylated ultrathin Ir nanosheets (Ir-NSs) of only five to six atomic layers’ thickness. Detailed analysis indicates that the growth confinement effect of carbon monoxide and the partially hydroxylated surface play a critical role in formation of the ultrathin structure. The ultrathin Ir-NSs exhibit excellent performance for both the hydrogen evolution reaction and oxygen evolution reaction in a wide pH range, outperforming the state-of-the-art Pt/C and IrO2, respectively. Density-functional theory calculations reveal that the partial hydroxylation not only enhances the surface electron transfer between Ir-sites and intermediate O-species, but also guarantees efficient initial activation of bond cleavage of H-O-H for first-step H2O splitting. This, ultimately, breaks through barriers to full water splitting, with efficient electron transfer essentially maintained.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1032
Author(s):  
Anirban Naskar ◽  
Rabi Khanal ◽  
Samrat Choudhury

The electronic structure of a series perovskites ABX3 (A = Cs; B = Ca, Sr, and Ba; X = F, Cl, Br, and I) in the presence and absence of antisite defect XB were systematically investigated based on density-functional-theory calculations. Both cubic and orthorhombic perovskites were considered. It was observed that for certain perovskite compositions and crystal structure, presence of antisite point defect leads to the formation of electronic defect state(s) within the band gap. We showed that both the type of electronic defect states and their individual energy level location within the bandgap can be predicted based on easily available intrinsic properties of the constituent elements, such as the bond-dissociation energy of the B–X and X–X bond, the X–X covalent bond length, and the atomic size of halide (X) as well as structural characteristic such as B–X–B bond angle. Overall, this work provides a science-based generic principle to design the electronic states within the band structure in Cs-based perovskites in presence of point defects such as antisite defect.


Author(s):  
Chenhao Tu ◽  
Nana Ma ◽  
Qingli Xu ◽  
Wenyue Guo ◽  
Lanxin Zhou ◽  
...  

C-radical borylation is an significant approach for the construction of carbon−boron bond. Photochemical borylation of aryl halides successfully applied this strategy. However, precise mechanisms, such as the generation of aryl radicals and the role of base additive(TMDAM) and water, remain controversy in these reactions. In this study, photochemical borylation of aryl halides has been researched by density functional theory (DFT) calculations. Indeed, the homolytic cleavage of the C−X bond under irradiation with UV-light is a key step for generation of aryl radicals. Nevertheless, the generation of aryl radicals may also undergo the process of single electron transfer and the heterolytic carbon-halogen bond cleavage sequence, and the latter is favorable during the reaction.


2017 ◽  
Vol 72 (12) ◽  
pp. 1131-1138 ◽  
Author(s):  
Mehdi Aramideh ◽  
Mahmoud Mirzaei ◽  
Ghadamali Khodarahmi ◽  
Oğuz Gülseren

AbstractCancer is one of the major problems for so many people around the world; therefore, dedicating efforts to explore efficient therapeutic methodologies is very important for researchers of life sciences. In this case, nanostructures are expected to be carriers of medicinal compounds for targeted drug design and delivery purposes. Within this work, the graphene (Gr)-functionalised derivatives of capecitabine (CAP), as a representative anticancer, have been studied based on density functional theory calculations. Two different sizes of Gr molecular models have been used for the functionalisation of CAP counterparts, CAP-Gr3 and CAP-Gr5, to explore the effects of Gr-functionalisation on the original properties of CAP. All singular and functionalised molecular models have been optimised and the molecular and atomic scale properties have been evaluated for the optimised structures. Higher formation favourability has been obtained for CAP-Gr5 in comparison with CAP-Gr3 and better structural stability has been obtained in the water-solvated system than the isolated gas-phase system for all models. The CAP-Gr5 model could play a better role of electron transferring in comparison with the CAP-Gr3 model. As a concluding remark, the molecular properties of CAP changed from singular to functionalised models whereas the atomic properties remained almost unchanged, which is expected for a carrier not to use significant perturbations to the original properties of the carried counterpart.


2012 ◽  
Vol 9 (10) ◽  
pp. 3891-3899 ◽  
Author(s):  
A. Bannert ◽  
C. Bogen ◽  
J. Esperschütz ◽  
A. Koubová ◽  
F. Buegger ◽  
...  

Abstract. While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006) after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.


2015 ◽  
Vol 51 (13) ◽  
pp. 2621-2624 ◽  
Author(s):  
Jong Suk Yoo ◽  
Tuhin S. Khan ◽  
Frank Abild-Pedersen ◽  
Jens K. Nørskov ◽  
Felix Studt

During A–H (A = C, N, O) bond cleavage on O* or OH* pre-covered (111) surfaces, the oxygen species play the role of modifying the reaction energy by changing the species involved in the initial and final states of the reaction.


2005 ◽  
Vol 862 ◽  
Author(s):  
Mayur S. Valipa ◽  
Tamas Bakos ◽  
Eray S. Aydil ◽  
Dimitrios Maroudas

AbstractDevice-quality hydrogenated amorphous silicon (a-Si:H) thin films grown under conditions where the SiH3 radical is the dominant deposition precursor are remarkably smooth, as the SiH3 radical is very mobile and fills surface valleys during its diffusion on the a-Si:H surface. In this paper, we analyze atomic-scale mechanisms of SiH3 diffusion on a-Si:H surfaces based on molecular-dynamics simulations of SiH3 radical impingement on surfaces of a-Si:H films. The computed average activation barrier for radical diffusion on a-Si:H is 0.16 eV. This low barrier is due to the weak adsorption of the radical onto the a-Si:H surface and its migration predominantly through overcoordination defects; this is consistent with our density functional theory calculations on crystalline Si surfaces. The diffusing SiH3 radical incorporates preferentially into valleys on the a-Si:H surface when it transfers an H atom and forms a Si-Si backbond, even in the absence of dangling bonds.


2014 ◽  
Vol 19 (4) ◽  
pp. 235-240
Author(s):  
Jun Hu ◽  
Xiao-yong Fan ◽  
Chao-Ming Wang

The absorption and possible reaction paths during corrosion have been systematically identified at the molecular level by us-ing density functional theory calculations. The results show that the co-adsorbed water molecule has a two-fold impact on the corrosive kinetics process. The one is the solvation effect, where water molecule affects the various reactions through ion dipole interaction, without bond fracture and formation. Another is the H-transfer mediator, where the bond of co-adsorbed water molecule breaks and regenerates in order to transfer hydrogen atoms.


Sign in / Sign up

Export Citation Format

Share Document