scholarly journals Catalyst Replacement Policy on Multienzymatic Systems: Theoretical Study in the One-Pot Sequential Batch Production of Lactofructose Syrup

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1167
Author(s):  
Pablo Silva ◽  
Vanessa Arancibia ◽  
Daniela Cid ◽  
Oscar Romero ◽  
Andrés Illanes ◽  
...  

One-pot systems are an interesting proposal to carry out multi-enzymatic reactions, though this strategy implies establishing an optimal balance between the activity and operability of the involved enzymes. This is crucial for enzymes with marked differences in their operational stability, such as one-pot production of lactofructose syrup from cheese whey permeate, which involves two enzymes—β-galactosidase (β-gal) and glucose isomerase (GI). The aim of this work was to study the behavior of one-pot sequential batch production of lactofructose syrup considering both enzymes immobilized individually, in order to evaluate and design a strategy of replacement of the catalysts according to their stabilities. To this end, the modelling and simulation of the process was carried out, considering simultaneously the kinetics of both reactions and the kinetics of inactivation of both enzymes. For the latter, it was also considered the modulating effect that sugars present in the medium may have on the stability of β-gal, which is the less stable enzyme. At the simulated reaction conditions of 40 °C, pH 7, and 0.46 (IUGI/IUβ-gal), the results showed that considering the stability of β-gal under non-reactive conditions, meaning in absence of the effect of modulation, it is necessary to carry out four replacements of β-gal for each cycle of use of GI. On the other hand, when considering the modulation caused by the sugars on the β-gal stability, the productivity increases up to 23% in the case of the highest modulation factor studied (η = 0.8). This work shows the feasibility of conducting a one-pot operation with immobilized enzymes of quite different operational stability, and that a proper strategy of biocatalyst replacement increases the productivity of the process.

2019 ◽  
Vol 288 ◽  
pp. 102-107 ◽  
Author(s):  
Erick Araya ◽  
Paulina Urrutia ◽  
Oscar Romero ◽  
Andrés Illanes ◽  
Lorena Wilson
Keyword(s):  
One Pot ◽  

2016 ◽  
Vol 20 (9) ◽  
pp. 1647-1653 ◽  
Author(s):  
Jutta Plößer ◽  
Martin Lucas ◽  
Johan Wärnå ◽  
Tapio Salmi ◽  
Dmitry Yu. Murzin ◽  
...  
Keyword(s):  
One Pot ◽  
The One ◽  

2021 ◽  
Author(s):  
Chun Liu ◽  
Fangyan Chen ◽  
Yu-bin Tang ◽  
Peng-wei Huo

Abstract In this study, PPy@Ag/rGO nanocomposites were successfully synthesized via the one-pot hydrothermal mothed using graphene oxide, pyrrole monomer and silver nitrate. The structures and morphologies of as-obtained PPy@Ag/rGO ternary nanocomposites were systematically investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). It was found that the PPy@Ag NPs were well-distributed on the reduction graphene oxide nanoflakes. The minimum inhibitory concentration (MIC) demonstrated that the PPy@Ag/rGO had enhanced antimicrobial efficiency with Gram-negative (Escherichia coli) bacteria compared with that at the same concentration of silver. From liquid antibacterial cycle experiments, the addition of polypyrrole contributes to the stability of nanosilver and reducing the loss of nanosilver. After several cycles, the antibacterial rate of PPy@Ag/rGO nanomaterials can still be maintained above 90%. In addition, the photocatalytic degradation of tetracycline (TC) under visible light displayed that the composite had good photocatalytic activity and catalytic stability.


RSC Advances ◽  
2015 ◽  
Vol 5 (65) ◽  
pp. 52508-52515 ◽  
Author(s):  
Mehdi Shahraki ◽  
Sayyed Mostafa Habibi-Khorassani ◽  
Maryam Dehdab

This work focused on the effects of temperature and different para-substituted anilines on the activation parameters and kinetics of the synthesis reaction of 3,4,5-substituted furan-2(5H)-ones which were studied spectrally at different temperatures in formic acid.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


1975 ◽  
Vol 34 (02) ◽  
pp. 426-444 ◽  
Author(s):  
J Kahan ◽  
I Nohén

SummaryIn 4 collaborative trials, involving a varying number of hospital laboratories in the Stockholm area, the coagulation activity of different test materials was estimated with the one-stage prothrombin tests routinely used in the laboratories, viz. Normotest, Simplastin-A and Thrombotest. The test materials included different batches of a lyophilized reference plasma, deep-frozen specimens of diluted and undiluted normal plasmas, and fresh and deep-frozen specimens from patients on long-term oral anticoagulant therapy.Although a close relationship was found between different methods, Simplastin-A gave consistently lower values than Normotest, the difference being proportional to the estimated activity. The discrepancy was of about the same magnitude on all the test materials, and was probably due to a divergence between the manufacturers’ procedures used to set “normal percentage activity”, as well as to a varying ratio of measured activity to plasma concentration. The extent of discrepancy may vary with the batch-to-batch variation of thromboplastin reagents.The close agreement between results obtained on different test materials suggests that the investigated reference plasma could be used to calibrate the examined thromboplastin reagents, and to compare the degree of hypocoagulability estimated by the examined PIVKA-insensitive thromboplastin reagents.The assigned coagulation activity of different batches of the reference plasma agreed closely with experimentally obtained values. The stability of supplied batches was satisfactory as judged from the reproducibility of repeated measurements. The variability of test procedures was approximately the same on different test materials.


1979 ◽  
Author(s):  
Jan Hermans

Measurements of light scattering have given much information about formation and properties of fibrin. These studies have determined mass-length ratio of linear polymers (protofibrils) and of fibers, kinetics of polymerization and of lateral association and volume-mass ratio of thick fibers. This ratio is 5 to 1. On the one hand, this high value suggests that the fiber contains channels that allow the diffusion of enzymes such as Factor XHIa and plasmin; on the other hand, the high value appears paradoxical for a stiff fiber made up of elongated units (fibrin monomers) arranged in parallel. Such a high fiber volume is a property of only a small set out of many high-symmetry models of fibrin, which may be constructed from overlapping three-domain monomers which are arranged into strands, are aligned nearly parallel to the fiber axis and make adequate longitudinal and lateral contacts. These models contain helical protofibrils related to each other by rotation axes parallel to the fiber axis. The protofibrils may contain 2, 3 or 4 monomers per helical turn and there are four possible symmetries. A large specific volume is achieved if the ends of each monomer are slightly displaced from the protofibril axis, either by a shift or by a tilt of the monomer. The fiber containing tilted monomers is more highly interconnected; the two ends of a tilted monomer form lateral contacts with different adjacent protofibrils, whereas the two ends of a non-tilted monomer contact the same adjacent protofibril(s).


2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


Sign in / Sign up

Export Citation Format

Share Document