scholarly journals The Influence of Si/Al Ratio on the Physicochemical and Catalytic Properties of MgO/ZSM-5 Catalyst in Transesterification Reaction of Rapeseed Oil

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1260
Author(s):  
Łukasz Szkudlarek ◽  
Karolina Chałupka ◽  
Waldemar Maniukiewicz ◽  
Jadwiga Albińska ◽  
Malgorzata I. Szynkowska-Jóźwik ◽  
...  

This work presents the comparative physicochemical and catalytic studies of metal oxide MgO catalysts in a transesterification reaction. The influence of the Si/Al ratio in the catalytic material on their catalytic properties in the studied process was extensively evaluated. In addition, the effect of the type of zeolite ZSM-5 form on the catalytic reactivity of MgO based catalysts was investigated. In order to achieve the main goals of this work, a series of MgO/ZSM-5 catalysts were prepared via the impregnation method. Their physicochemical properties were studied using X-ray diffraction (XRD), BET, FTIR and TPD-CO2 methods. The highest activity in the studied process exhibited MgO catalyst supported on ZSM-5 characterized by the highest ratio between silica and alumina. The most active catalyst system in the transesterification reaction was 10% MgO/ZSM-5 (Si/Al = 280), which showed the highest value of higher fatty acid methyl esters (94.6%) and high yield of triglyceride conversion (92.9%). The high activity of this system is explained by the alkalinity, sorption properties in relation to methanol and its high specific surface area compared to the rest of the investigated MgO based catalysts.

2019 ◽  
Vol 958 ◽  
pp. 29-34
Author(s):  
Fabiana Medeiros do Nascimento Silva ◽  
Erivaldo Genuíno Lima ◽  
Tellys Lins de Almeida Barbosa ◽  
Meiry Gláucia Freire Rodrigues

The present study describes the preparation of catalyst MoO3 supported on smectite clay by the solution impregnation method and its evaluation as a heterogeneous catalyst in the production of biodiesel from soybean oil. The individual effects of catalyst (hard green clay and MoO3/hard green clay) on kinematic viscosity of produced biodiesel and conversion were investigated. The samples were characterized by X-ray diffraction, X-ray fluorescence spectroscopy and N2 adsorption-desorption. Conditions of soybean oil transesterification were: 5% catalyst by weight, 1:12 oil to methanol molar ratio, at 200 oC for 60 minutes. Patterns of X-ray diffraction showed the characteristic peaks of the structure of smectite. The results of X-ray diffraction suggests that MoO3 species exist as highly dispersed surface species. Molybdenum metal identified as effective catalysts for the transesterification reaction of soybean oil with methanol. A preliminary design assessment show that this catalysts (MoO3/HGC) is sufficiently active achieving conversion in excess of 62,07% at temperature below 200 oC.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 242
Author(s):  
Ahmed A. Ibrahim ◽  
Ahmed S. Al-Fatesh ◽  
Nadavala Siva Kumar ◽  
Ahmed E. Abasaeed ◽  
Samsudeen O. Kasim ◽  
...  

Dry reforming of methane (DRM) was studied in the light of Ni supported on 8%PO4 + ZrO2 catalysts. Cerium was used to modify the Ni active metal. Different percentage loadings of Ce (1%, 1.5%, 2%, 2.5%, 3%, and 5%) were tested. The wet incipient impregnation method was used for the preparation of all catalysts. The catalysts were activated at 700 °C for ½ h. The reactions were performed at 800 °C using a gas hourly space velocity of 28,000 mL (h·gcat)−1. X-ray diffraction (XRD), N2 physisorption, hydrogen temperature programmed reduction (H2-TPR), temperature programmed oxidation (TPO), temperature programmed desorption (TPD), and thermogravimetric analysis (TGA) were used for characterizing the catalysts. The TGA analysis depicted minor amounts of carbon deposition. The CO2-TPD results showed that Ce enhanced the basicity of the catalysts. The 3% Ce loading possessed the highest surface area, the largest pore volume, and the greatest pore diameter. All the promoted catalysts enhanced the conversions of CH4 and CO2. Among the promoted catalysts tested, the 10Ni + 3%Ce/8%PO4 + ZrO2 catalyst system operated at 1 bar and at 800 °C gave the highest conversions of CH4 (95%) and CO2 (96%). The stability profile of Cerium-modified catalysts (10%Ni/8%PO4 + ZrO2) depicted steady CH4 and CO2 conversions during the 7.5 h time on stream.


Author(s):  
Ilhem Rekkab-Hammoumraoui ◽  
Abderrahim Choukchou-Braham

A series of metal-loaded (Ru, Pt, Co) alumina catalysts were evaluated for the catalytic oxidation of cyclohexane using tertbutylhydroperoxide (TBHP) as oxidant and acetonitrile or acetic acid as solvent. These materials were prepared by the impregnation method and then characterized by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), H2 chemisorption, Fourier Transformed Infrared Spectroscopy (FTIR), High-Resolution Transmission Electron Microscopy (HRTEM), and X-ray Diffraction (XRD). All the prepared materials acted as efficient catalysts. Among them, Ru/Al2O3 was found to have the best catalytic activity with enhanced cyclohexane conversion of 36 %, selectivity to cyclohexanol and cyclohexanone of 96 % (57.6 mmol), and cyclohexane turnover frequency (TOF) of 288 h-1. Copyright © 2018 BCREC Group. All rights reservedReceived: 26th May 2017; Revised: 17th July 2017; Accepted: 18th July 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018How to Cite: Rekkab-Hammoumraoui, I., Choukchou-Braham, A. (2018). Catalytic Properties of Alumina-Supported Ruthenium, Platinum, and Cobalt Nanoparticles towards the Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone. Bulletin of Chemical Reaction Engineering & Catalysis, 13(1): 24-36 (doi:10.9767/bcrec.13.1.1226.24-35) 


Author(s):  
Nina Haryani ◽  
Taslim Taslim ◽  
Irvan ◽  
Renita Manurung ◽  
Rondang Tambun

Biofuels as environmentally friendly alternative fuels such as biogasoline, biokerosene and others are generally obtained through a cracking process and take place more effectively to attend a catalyst. In this study, the synthesis of ZnO/ZSM-5 aims to obtain a catalyst that can be used in the cracking process of Palm Methyl Esters (PME) into hydrocarbon fuels especially biogasoline. This catalyst is environmentally friendly, easy to separate, has good selectivity, and can increase the conversion of cracking products. The wet impregnation method followed by drying and calcination is the method used to synthesize the catalyst. Furthermore, several analyzes were carried out to determine the characteristics of the catalyst. The analysis is the Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD), N2 adsorption-desorption with BET-BJH, Temperature Programmed Desorption-NH3 (TPD-NH3) and the Temperature Programmed Reduction (TPR). Based on synthesis results obtained ZnO/ZSM-5 catalyst with ZnO content of 11.77 wt%, 13.61 wt% and 18.22 wt%. The use of this catalyst in the cracking process can result in the conversion of liquid fuel by 88.57%, heavy hydrocarbon (8.57%) and gas product (2.86%).


2021 ◽  
Author(s):  
Deepak Totaram Tayde ◽  
Madhukar E. Navgire ◽  
Machhindra K. Lande

Abstract A convenient, One pot synthesis of heterocyclic nucleous acridine derivative compound has been achieved those are having very much attention in medicinal chemistry because of their extensive application in biology. The mixture of dimedone, substituted benzaldehyde and aniline were catalyzed by efficient In2O3-SiO2 heterogeneous reusable catalyst in ethanol to obtain the desired acridine derivatives with good yield. Hydrothermal method used to synthesize In2O3-SiO2 catalytic material. This catalytic material were characterized by using X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), Transmission electron microscope (TEM), Temperature-programmed desorption (NH3-TPD) and Brunauer-Emmett-Teller (BET). Our synthetic strategy features high yield, simple work up procedure, non-toxic, clean, and easy recovery and reusability of the catalytic system.


Jurnal Kimia ◽  
2016 ◽  
Author(s):  
Ana Malia ◽  
Putu Suarya ◽  
Ida Ayu Raka Astiti Asih ◽  
I Made Wisnu Adhi Putra

The research of transesterification reaction catalyzed by CaO/natural zeolite has been carried out. This work was aimed to obtain the high yield of biodiesel. The supporting process of CaO on natural zeolite (CaO/ZAA) was done by using wet impregnation method and characterization of CaO/ZAA was performed using XRD, FTIR and the determination of specific surface area of natural zeolite as CaO supporter was performed by BET method. This research aims to study the influence of transesterification reaction which was executed by varying molar ratio of oil to methanol and reaction temperature. Analysis of functional groups and minerals using FTIR and XRD, respectively, showed no significant changes before and after the impregnation of CaO on natural zeolites. CaO supported on natural zeolite was undetected by FTIR. Instead, it was detected by the vibration of carbonate groups as the result of the CO2 absorption by CaO and the result of surface area analysis using BET method showed that the greater the size of natural zeolite, the smaller the specific surface area of catalyst. The result analysis using BET method showed that the spesific surface area of 200 mesh sized natural zeolite as CaO supporter was 9.993 m2/g. The simple gravimetric test revealed that  the amount of CaO supported on 200 mesh sized natural zeolite was 0.2155 g/g. It was concluded that CaO/ZAA 200 mesh was the most suitable catalyst which was then used in the production of biodiesel. The transesterification result showed that the highest biodiesel yield of 98.34% was gained at molar ratio of oil to methanol of 1:15 and at the temperature of 60 oC. The GC-MS analysis indicated that the main components of the biodiesel were methyl palmitate and methyl oleate.


2019 ◽  
Vol 16 (2) ◽  
pp. 288-293
Author(s):  
Yogesh W. More ◽  
Sunil U. Tekale ◽  
Nitishkumar S. Kaminwar ◽  
László Kótai ◽  
Tibor Pasinszki ◽  
...  

Aim and Objective: The present study was performed with the aim to develop an efficient and environmentally benign protocol for the synthesis of biologically siginifcant 3, 4-dihydropyrano[c]chromenes using a new catalytic material. The protocol involves the use of a reusable, environment friendly materials and solvents with operational simplicity. Materials and Methods: Carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin were synthesized, characterized with well versed analytical techniques such as XRD, SEM and Raman spectroscopy and the synthesized material was used as a catalyst for the environmentally benign synthesis of 3,4-dihydropyrano[c]chromenes. Results: The formation of carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin was confirmed by XRD, SEM and Raman spectroscopy which was employed as a heterogeneous material for the synthesis of 3,4-dihydropyrano[c]chromenes. The products formed were characterized by the analysis of spectroscopic data - NMR, IR and mass. The safe catalytic system offers several advantages including operational simplicity, environmental friendliness, high yield, and reusability of catalyst and green chemical transformation. Conclusion: Herein we report an easy and efficient protocol for the one-pot synthesis of dihydropyrano[ c]chromenes using environmentally benign MCR approach in ethanol as the green solvent. The method developed herein constitutes a valuable addition to the existing methods for the synthesis of titled compounds.


1996 ◽  
Vol 61 (8) ◽  
pp. 1131-1140 ◽  
Author(s):  
Abd El-Aziz Ahmed Said

Vanadium oxide catalysts doped or mixed with 1-50 mole % Fe3+ ions were prepared. The structure of the original samples and those calcined from 200 up to 500 °C were characterized by TG, DTA, IR and X-ray diffraction. The SBET values and texture of the solid catalysts were investigated. The catalytic dehydration-dehydrogenation of isopropanol was carried out at 200 °C using a flow system. The results obtained showed an observable decrease in the activity of V2O5 on the addition of Fe3+ ions. Moreover, Fe2V4O13 is the more active and selective catalyst than FeVO4 spinels. The results were correlated with the active sites created on the catalyst surface.


1993 ◽  
Vol 58 (12) ◽  
pp. 2924-2935 ◽  
Author(s):  
Jane H. Jones ◽  
Bohumil Štíbr ◽  
John D. Kennedy ◽  
Mark Thornton-Pett

Thermolysis of [8,8-(PMe2Ph)2-nido-8,7-PtCB9H11] in boiling toluene solution results in an elimination of the platinum centre and cluster closure to give the ten-vertex closo species [6-(PMe2Ph)-closo-1-CB9H9] in 85% yield as a colourles air stable solid. The product is characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Crystals (from hexane-dichloromethane) are monoclinic, space group P21/c, with a = 903.20(9), b = 1 481.86(11), c = 2 320.0(2) pm, β = 97.860(7)° and Z = 8, and the structure has been refined to R(Rw) = 0.045(0.051) for 3 281 observed reflections with Fo > 2.0σ(Fo). The clean high-yield elimination of a metal centre from a polyhedral metallaborane or metallaheteroborane species is very rare.


2021 ◽  
Vol 22 (13) ◽  
pp. 6787
Author(s):  
Constantin I. Tănase ◽  
Constantin Drăghici ◽  
Miron Teodor Căproiu ◽  
Anamaria Hanganu ◽  
Gheorghe Borodi ◽  
...  

β-Ketophosphonates with pentalenofurane fragments linked to the keto group were synthesized. The bulky pentalenofurane skeleton is expected to introduce more hindrance in the prostaglandin analogues of type III, greater than that obtained with the bicyclo[3.3.0]oct(a)ene fragments of prostaglandin analogues I and II, to slow down (retard) the inactivation of the prostaglandin analogues by oxidation of 15α-OH to the 15-keto group via the 15-PGDH pathway. Their synthesis was performed by a sequence of three high yield reactions, starting from the pentalenofurane alcohols 2, oxidation of alcohols to acids 3, esterification of acids 3 to methyl esters 4 and reaction of the esters 4 with lithium salt of dimethyl methanephosphonate at low temperature. The secondary compounds 6b and 6c were formed in small amounts in the oxidation reactions of 2b and 2c, and the NMR spectroscopy showed that their structure is that of an ester of the acid with the starting alcohol. Their molecular structures were confirmed by single crystal X-ray determination method for 6c and XRPD powder method for 6b.


Sign in / Sign up

Export Citation Format

Share Document