scholarly journals SYNTHESIS, CHARACTERIZATION, AND APPLICATION OF ZnO/ZSM-5 AS CATALYST IN THE CRACKING PROCESS OF PALM METHYL ESTERS

Author(s):  
Nina Haryani ◽  
Taslim Taslim ◽  
Irvan ◽  
Renita Manurung ◽  
Rondang Tambun

Biofuels as environmentally friendly alternative fuels such as biogasoline, biokerosene and others are generally obtained through a cracking process and take place more effectively to attend a catalyst. In this study, the synthesis of ZnO/ZSM-5 aims to obtain a catalyst that can be used in the cracking process of Palm Methyl Esters (PME) into hydrocarbon fuels especially biogasoline. This catalyst is environmentally friendly, easy to separate, has good selectivity, and can increase the conversion of cracking products. The wet impregnation method followed by drying and calcination is the method used to synthesize the catalyst. Furthermore, several analyzes were carried out to determine the characteristics of the catalyst. The analysis is the Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD), N2 adsorption-desorption with BET-BJH, Temperature Programmed Desorption-NH3 (TPD-NH3) and the Temperature Programmed Reduction (TPR). Based on synthesis results obtained ZnO/ZSM-5 catalyst with ZnO content of 11.77 wt%, 13.61 wt% and 18.22 wt%. The use of this catalyst in the cracking process can result in the conversion of liquid fuel by 88.57%, heavy hydrocarbon (8.57%) and gas product (2.86%).

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wen Yang ◽  
Yanyan Feng ◽  
Wei Chu

The catalysts Ni/Al2O3and CaO modified Ni/Al2O3were prepared by impregnation method and applied for methanation of CO2. The catalysts were characterized by N2adsorption/desorption, temperature-programmed reduction of H2(H2-TPR), X-ray diffraction (XRD), and temperature-programmed desorption of CO2and H2(CO2-TPD and H2-TPD) techniques, respectively. TPR and XRD results indicated that CaO can effectively restrain the growth of NiO nanoparticles, improve the dispersion of NiO, and weaken the interaction between NiO and Al2O3. CO2-TPD and H2-TPD results suggested that CaO can change the environment surrounding of CO2and H2adsorption and thus the reactants on the Ni atoms can be activated more easily. The modified Ni/Al2O3showed better catalytic activity than pure Ni/Al2O3. Ni/CaO-Al2O3showed high CO2conversion especially at low temperatures compared to Ni/Al2O3, and the selectivity to CH4was very close to 1. The high CO2conversion over Ni/CaO-Al2O3was mainly caused by the surface coverage by CO2-derived species on CaO-Al2O3surface.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Pawel Mierczynski ◽  
Magdalena Mosińska ◽  
Lukasz Szkudlarek ◽  
Karolina Chalupka ◽  
Misa Tatsuzawa ◽  
...  

Biodiesel production from rapeseed oil and methanol via transesterification reaction facilitated by various monometallic catalyst supported on natural zeolite (NZ) was investigated. The physicochemical characteristics of the synthesized catalysts were studied by X-ray diffraction (XRD), Brunauer–Emmett–Teller method (BET), temperature-programmed-reduction in hydrogen (H2-TPR), temperature-programmed-desorption of ammonia (NH3-TPD), Scanning Electron Microscope equipped with EDX detector (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) methods. The highest activity and methyl ester yields were obtained for the Pt/NZ catalyst. This catalyst showed the highest triglycerides conversion of 98.9% and fatty acids methyl esters yields of 94.6%. The activity results also confirmed the high activity of the carrier material (NZ) itself in the investigated reaction. Support material exhibited 90.5% of TG conversion and the Fatty Acid Methyl Esters yield (FAME) of 67.2%. Introduction of noble metals improves the TG conversion and FAME yield values. Increasing of the metal loading from 0.5 to 2 wt.% improves the reactivity properties of the investigated catalysts.


Cerâmica ◽  
2018 ◽  
Vol 64 (371) ◽  
pp. 436-442 ◽  
Author(s):  
E. O. Moraes Júnior ◽  
J. O. Leite ◽  
A. G. Santos ◽  
M. J. B. Souza ◽  
A. M. Garrido Pedrosa

Abstract La1-xSrxNiO3 (x= 0.0, 0.3 or 0.7) perovskite-type oxides were synthesized using the modified proteic gel method and using collagen as an organic precursor. Catalysts of La1-xSrxNiO3/Al2O3 were obtained using the wet impregnation method. The synthesized catalysts were characterized by X-ray diffraction, surface area and temperature-programmed reduction. The catalysts were evaluated in the partial oxidation reaction of methane, and the levels of selectivity to CO, CO2, H2 and H2O were determined. Among the catalysts studied, the catalyst LaNiO3/Al2O3 had the highest methane conversion level (78%) and higher H2 selectivity (55%).


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1771 ◽  
Author(s):  
Stefan Neatu ◽  
Mihaela M. Trandafir ◽  
Adelina Stănoiu ◽  
Ovidiu G. Florea ◽  
Cristian E. Simion ◽  
...  

This study presents the synthesis and characterization of lanthanum-modified alumina supported cerium–manganese mixed oxides, which were prepared by three different methods (coprecipitation, impregnation and citrate-based sol-gel method) followed by calcination at 500 °C. The physicochemical properties of the synthesized materials were investigated by various characterization techniques, namely: nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and H2–temperature programmed reduction (TPR). This experimental study demonstrated that the role of the catalytic surface is much more important than the bulk one. Indeed, the incipient impregnation of CeO2–MnOx catalyst, supported on an optimized amount of 4 wt.% La2O3–Al2O3, provided the best results of the catalytic combustion of methane on our catalytic micro-convertors. This is mainly due to: (i) the highest pore size dimensions according to the Brunauer-Emmett-Teller (BET) investigations, (ii) the highest amount of Mn4+ or/and Ce4+ on the surface as revealed by XPS, (iii) the presence of a mixed phase (Ce2MnO6) as shown by X-ray diffraction; and (iv) a higher reducibility of Mn4+ or/and Ce4+ species as displayed by H2–TPR and therefore more reactive oxygen species.


2013 ◽  
Vol 634-638 ◽  
pp. 696-700
Author(s):  
Lin Jiu Xiao ◽  
Peng Li ◽  
Yong Gang Sheng

A series of Ti(SO4)2/γ-Al2O3 catalysts were prepared by impregnation method and the catalytic performance of these catalysts in 1-butene oligomerization was investigated. The heat treatment temperature played great influences on the catalytic performance of these catalysts in the oligomerization. 90.1 wt.% conversion of 1-butene and 92.2 wt.% selectivity of dimers were obtained on Ti(SO4)2/γ-Al2O3(450) catalyst at 80 °C, 1.0 Mpa and LHSV=0.6 h−1. The heat treatment temperature determined the crystallinity of TiOSO4 and specific surface area of these catalysts, which affected the catalytic performance of these catalysts in 1-butene oligomerization. In addition, the physicochemical properties of these catalysts were comparatively characterized by powder X-ray diffraction (XRD), N2 isothermal adsorption-desorption techniques.


2015 ◽  
Vol 1118 ◽  
pp. 205-210 ◽  
Author(s):  
Wei Chang Chen ◽  
Wen Yang ◽  
Jian Dong Xing ◽  
Lei Liu ◽  
Hong Li Sun ◽  
...  

Ni/Al2O3catalysts improved with different La contents were prepared by the conventional co-impregnation method and characterized by X-ray powder diffraction (XRD), N2adsorption-desorption, H2temperature-programmed reduction (H2-TPR). Catalytic performances for CO2methanation under condition (CO2/H2=4.1:1, 1 atm) were discussed in detail. XRD result demonstrated that the addition of La was in favor of decreasing the Ni particle size and increasing the dispersion of Ni species. The H2-TPR showed that La can change the proportion of various Ni species and increase the content of easily reducible Ni species. These results indicate that La species induce effect, resulting in smaller particle size and weaker interaction between active components and the support, higher dispersions, and reducibility of active phases, ultimately improving catalytic activity of CO2methanation.


2011 ◽  
Vol 364 ◽  
pp. 377-381 ◽  
Author(s):  
Syazwani Mohd Zaki ◽  
Srimala Sreekantan

This paper described the preparation of Cu loaded TiO₂ nanotube arrays. Firstly, TiO₂ nanotube arrays were formed by anodization. Afterwards, the formed nanotube arrays were incorporated with Cu by wet impregnation method. The soaking time and concentration were varied to obtain an optimum set of parameter for Cu incorporation in TiO₂ nanotubes. After anodization, all samples were annealed at 400°C for 4 hours to obtain anatase phase. The nanotube arrays were characterized by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD) and x-ray photoelectron spectra (XPS). An average diameter 63.02 nm and length 12.15µm were obtained for TiO₂ nanotubes. The photocatalytic activity of these nanotubes were investigated with methyl orange (MO) and the TiO₂ nanotube prepared in 0.01M of Cu (NO₃)₂ solution within 3 hours demonstrates the highest photocatalytic activity with 83.6% degradation of methyl orange. Keywords: copper doping, wet impregnation, photocatalytic activity


2021 ◽  
Vol 21 (12) ◽  
pp. 6082-6087
Author(s):  
Chih-Wei Tang ◽  
Hsiang-Yu Shih ◽  
Ruei-Ci Wu ◽  
Chih-Chia Wang ◽  
Chen-Bin Wang

The increase of harmful carbon monoxide (CO) caused by incomplete combustion can affect human health even lead to suffocation. Therefore reducing the CO discharged by vehicles or factories is urgent to improve the air quality. The spinel cobalt (II, III) oxide (Co3O4) is an active catalyst for CO abatement. In this study, we tried to fabricate dispersing Co3O4 via the dispersion-precipitation method with acetic acid, formic acid, and oxalic acid as the chelating dispersants. Then, the asprepared samples were calcined at 300 ºC for 4 h to obtain active catalysts, and assigned as Co(A), Co(F) and Co(O) respectively, the amount of the dispersants used are labeled as I (0.12 mole), II (0.03 mole) and III (0.01 mole). For comparison, another CoAP sample was prepared via alkaliinduced precipitation and calcined at 300 ºC. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), scanning electron microscope (SEM), and nitrogen adsorption/desorption system, and the catalytic activity focused on the CO oxidation. The influence of chelating dispersant on the performance of abatement of CO was pursued in this study. Apparently, the results showed that the chelating dispersant can influence the catalytic activity of CO abatement. An optimized ratio of dispersant can improve the performance, while excess dispersant lessens the surface area and catalytic performance. The series of Co(O) samples can easily donate the active oxygen since the labile Co–O bonding and indicated the preferential performance than both Co(A) and Co(F) samples. The nanorod Co(O)-II showed preferential for CO oxidation, T50 and T90 approached 96 and 127 ºC, respectively. Also, the favorable durability of Co(O)-II sample maintains 95% conversion still for 50 h at 130 ºC and does not emerge deactivation.


2013 ◽  
Vol 664 ◽  
pp. 515-520
Author(s):  
Chih Wei Tang ◽  
Jiunn Jer Hwang ◽  
Shie Hsiung Lin ◽  
Chin Chun Chung

The NiO-ZnO binary materials had been prepared by co-precipitation method. The weight percent of nickel of NiO-ZnO materials were 5, 10 and 20; they were pretreated under air at temperature of 300, 500 and 700°C, respectively. The characterization of NiO-ZnO materials were the thermal gravity analysis(TGA), X-ray diffraction(XRD), N2 adsorption-desorption at 77K, scaning electron microscope(SEM) and temperature-programmed reduction(TPR). The results revealed that surface areas of NiO-ZnO materials order from large to small were 20NiZn(OH)x(66 m2·g-1) > 10NiZn(OH)x(34 m2·g-1) > 5NiZn(OH)x(9 m2·g-1) after being calcined at the temperature of 500°C. Further, NiO-ZnO materials had two main reductive peaks at 390-415°C and 560-657°C, respectively. In all NiO-ZnO materials, 20NiZn(OH)x-C500 material had the highest surface area and the best interaction between NiO and ZnO.


2016 ◽  
Vol 881 ◽  
pp. 35-40
Author(s):  
Franciele Oliveira Costa ◽  
Carla Gabriela Azevedo Misael ◽  
André Miranda da Silva ◽  
Bianca Viana de Sousa

The mesoporous silica SBA-15 molecular sieve has been widely studied due to its unidirectional mesoporous structure, its high average pore diameter, its high thermal and hydrothermal stability and its ability to absorb metal ions, allowing its use as support material for catalysts. This study aimed to synthesize the Co/SBA-15 catalyst, and characterize it through the techniques of X-ray diffraction, temperature programmed reduction (TPR) and scanning electron microscopy (SEM). The SBA-15 support was synthesized from the following molar composition of reaction mixture: 1TEOS: 0.017 P123: 5.7 HCl: 173 H2O: 40 EtOH, and after calcined at 550 °C for 6 hours. The Co/SBA-15 catalyst was prepared by incorporating 10% cobalt by wet impregnation. Through the X-ray diffractograms, it was found that the impregnation has not changed the structure of the material. RTP profiles showed the presence of peaks at different temperatures that may be caused by dispersion of the cobalt.


Sign in / Sign up

Export Citation Format

Share Document