scholarly journals Synthesis of Methyl Mercaptan on Mesoporous Alumina Prepared with Hydroxysafflor Yellow A as Template: The Synergistic Effect of Potassium and Molybdenum

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1365
Author(s):  
Chuang Peng ◽  
Dong Zeng ◽  
Jianjun Li ◽  
Shuai Peng ◽  
Jun Xiong ◽  
...  

K-promoted Mo-based catalysts showed great promise for the hydrogenation of CS2 to methyl mercaptan (CH3SH). However, the research on the synergistic effect of K and Mo, and the active site of CS2 hydrogenation to CH3SH were unexplored widely. To solve this problem, the synergistic effect of K and Mo in the K-promoted Mo-based catalysts for CS2 hydrogenation to prepare CH3SH was investigated. The mesoporous alumina was the support and loaded the active components potassium and molybdenum to prepare the catalyst. The results suggested that the active components K and Mo can not only cooperatively regulate the acid-base sites on the catalyst surface, but also stabilize the molybdate species at +5 valence during the reduction process and increase the Mo unsaturated coordination sites. Combined with the results of the catalytic activity evaluation, indicating that the main active site of the catalysts is the weak Lewis acid-base site, and the strong acidic site and strong alkaline site are not conducive to the formation of CH3SH. Moreover, the possible catalytic mechanism of CS2 hydrogenation to CH3SH on the weak Lewis acid-base sites of the catalysts was proposed. The research results of this paper can provide an experimental basis and theoretical guidance for the design of high-performance CH3SH synthesis catalyst and further mechanism research.

Author(s):  
Shotaro Tada ◽  
Norifumi Asakuma ◽  
Shiori Ando ◽  
Toru Asaka ◽  
Yusuke Daiko ◽  
...  

This paper reports on the relationship between the H2 chemisorption properties and reversible structural reorientation of the possible active site around Al formed in-situ within polymer-derived ceramics (PDCs) based on...


2021 ◽  
Vol 252 ◽  
pp. 02068
Author(s):  
Haoxuan Hu ◽  
Ran Zhao ◽  
Xianwei Fan ◽  
Junyi Liu ◽  
Yahui Nie ◽  
...  

In this work, the g-C3N4/V2C MXene composite catalyst was prepared by solvothermal method, and its denitration performance under synergistic plasma (NTP) was investigated. The results showed that when the mass ratio of V2C is 3%, the denitration performance of V-CN-3-NTP is as high as 83.3%, which is 1.2 and 2.1 times that of the V2C-NTP and g-C3N4-NTP systems alone. The apparent morphology, phase structure, and catalytic mechanism of the catalyst were studied by SEM, TEM, XRD, FTIR, XPS, etc. The results showed that g-C3N4 grows well on V2C mxene. V2C is not only an electron acceptor but also an active site for NO adsorption. The electrons and holes generated by V2C could be effectively separated by the high-voltage electric field, which improves the denitration performance and shows a good synergistic effect.


2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.


2020 ◽  
Author(s):  
Jon Uranga ◽  
Lukas Hasecke ◽  
Jonny Proppe ◽  
Jan Fingerhut ◽  
Ricardo A. Mata

The 20S Proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells as well as in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome, an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy and boronic acid containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics and Bayesian optimization of non-bonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach to the reevaluation of non-bonded potentials making use of QM/MM dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the inhibitor.


1980 ◽  
Vol 45 (2) ◽  
pp. 335-338 ◽  
Author(s):  
Adéla Kotočová ◽  
Ulrich Mayer

The solvation effect of a number of nonaqueous polar solvents was studied on the oxidation-reduction properties of the [Co(en)3]3+-[Co(en)3]2+ system. Interactions of these ions with the solvent molecules are discussed in terms of their coordination, which is accompanied by a specific interaction of the Lewis acid-base type, namely formation of a hydrogen bond between the interacting particles. This is the main controlling factor of the redox properties of the studied system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Riley B. Peacock ◽  
Taylor McGrann ◽  
Marco Tonelli ◽  
Elizabeth A. Komives

AbstractSerine proteases catalyze a multi-step covalent catalytic mechanism of peptide bond cleavage. It has long been assumed that serine proteases including thrombin carry-out catalysis without significant conformational rearrangement of their stable two-β-barrel structure. We present nuclear magnetic resonance (NMR) and hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments on the thrombin-thrombomodulin (TM) complex. Thrombin promotes procoagulative fibrinogen cleavage when fibrinogen engages both the anion binding exosite 1 (ABE1) and the active site. It is thought that TM promotes cleavage of protein C by engaging ABE1 in a similar manner as fibrinogen. Thus, the thrombin-TM complex may represent the catalytically active, ABE1-engaged thrombin. Compared to apo- and active site inhibited-thrombin, we show that thrombin-TM has reduced μs-ms dynamics in the substrate binding (S1) pocket consistent with its known acceleration of protein C binding. Thrombin-TM has increased μs-ms dynamics in a β-strand connecting the TM binding site to the catalytic aspartate. Finally, thrombin-TM had doublet peaks indicative of dynamics that are slow on the NMR timescale in residues along the interface between the two β-barrels. Such dynamics may be responsible for facilitating the N-terminal product release and water molecule entry that are required for hydrolysis of the acyl-enzyme intermediate.


Sign in / Sign up

Export Citation Format

Share Document