scholarly journals Comprehensive Comparison of Hetero-Homogeneous Catalysts for Fatty Acid Methyl Ester Production from Non-Edible Jatropha curcas Oil

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1420
Author(s):  
Khawer Khan ◽  
Noaman Ul-Haq ◽  
Wajeeh Ur Rahman ◽  
Muzaffar Ali ◽  
Umer Rashid ◽  
...  

The synthesis of biodiesel from Jatropha curcas by transesterification is kinetically controlled. It depends on the molar ratio, reaction time, and temperature, as well as the catalyst nature and quantity. The aim of this study was to explore the transesterification of low-cost, inedible J. curcas seed oil utilizing both homogenous (potassium hydroxide; KOH) and heterogenous (calcium oxide; CaO) catalysis. In this effort, two steps were used. First, free fatty acids in J. curcas oil were reduced from 12.4 to less than 1 wt.% with sulfuric acid-catalyzed pretreatment. Transesterification subsequently converted the oil to biodiesel. The yield of fatty acid methyl esters was optimized by varying the reaction time, catalyst load, and methanol-to-oil molar ratio. A maximum yield of 96% was obtained from CaO nanoparticles at a reaction time of 5.5 h with 4 wt.% of the catalyst and an 18:1 methanol-to-oil molar ratio. The optimum conditions for KOH were a molar ratio of methanol to oil of 9:1, 5 wt.% of the catalyst, and a reaction time of 3.5 h, and this returned a yield of 92%. The fuel properties of the optimized biodiesel were within the limits specified in ASTM D6751, the American biodiesel standard. In addition, the 5% blends in petroleum diesel were within the ranges prescribed in ASTM D975, the American diesel fuel standard.

2019 ◽  
Vol 15 (1) ◽  
pp. 79
Author(s):  
Noor Ridha Yanti ◽  
Meilana Dharma Putra ◽  
Agung Nugroho ◽  
Hesty Heryani

In recent years, the development of renewable energy such as biodiesel has been widely researched throughout the world as technology advances in the era of Industry 4.0. At the final station of biodiesel production in the maturation tank, the by-products will form by-products in the form of sterol glycosides in Fatty Acid Methyl Esters which have not been utilized. This study aims to determine the volume of biodiesel from a mixture of sterol glycosides with a ratio of 0.5% H2SO4 catalyst concentration; 1%; 1.5% and 2% and tested their characteristics in accordance with the Indonesian National Standard (SNI 7182: 2015). Biodiesel production was carried out by esterification with a molar ratio of 1:6 (sterol glycoside: methanol) to variations in H2SO4 catalyst concentration. The results of the highest yield volume biodiesel were obtained from a catalyst concentration of 1.5% of 28.02% and the lowest yield of 17.50% in a 0.5% catalyst. Based on the characteristic test of biodiesel by varying the concentration of catalyst H2SO4 obtained density of 852 – 862 kg m-3, viscosity of 4.642 – 4.950 mm2 s-1 and saponification number of 191.007 – 198.164 mg-KOH g-1 according to standard characteristics SNI 7182:2015, while for the water content of 0.1965 – 0.1976% and acid numbers of 2.151 – 3.232 mg-KOH g-1 isn’t according to standard characteristics. Based on research, pre-treatment treatments was recommended before the refining process to reduce the amount of acid and moisture content so according to standard characteristics.


2003 ◽  
Vol 31 (2) ◽  
pp. 133-140 ◽  
Author(s):  
A Ozbek ◽  
O Aktas

The cellular fatty acid profiles of 67 strains belonging to three different species of the genus Mycobacterium were determined by gas chromatography of the fatty acid methyl esters, using the MIDI Sherlock® Microbial Identification System (MIS). The species M. tuberculosis, M. xenopi and M. avium complex were clearly distinguishable and could be identified based on the presence and concentrations of 12 fatty acids: 14:0, 15:0, 16:1ω7c, 16:1ω6c, 16:0, 17:0, 18:2ω6,9c, 18:1ω9c, 18:0, 10Me-18:0 tuberculostearic acid, alcohol and cyclopropane. Fatty acid analysis showed that there is great homogeneity within and heterogeneity between Mycobacterium species. Thus the MIS is an accurate, efficient and relatively rapid method for the identification of mycobacteria.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1085
Author(s):  
Shafaq Nisar ◽  
Muhammad Asif Hanif ◽  
Umer Rashid ◽  
Asma Hanif ◽  
Muhammad Nadeem Akhtar ◽  
...  

The effective transesterification process to produce fatty acid methyl esters (FAME) requires the use of low-cost, less corrosive, environmentally friendly and effective catalysts. Currently, worldwide biodiesel production revolves around the use of alkaline and acidic catalysts employed in heterogeneous and homogeneous phases. Homogeneous catalysts (soluble catalysts) for FAME production have been widespread for a while, but solid catalysts (heterogeneous catalysts) are a newer development for FAME production. The rate of reaction is much increased when homogeneous basic catalysts are used, but the main drawback is the cost of the process which arises due to the separation of catalysts from the reaction media after product formation. A promising field for catalytic biodiesel production is the use of heteropoly acids (HPAs) and polyoxometalate compounds. The flexibility of their structures and super acidic properties can be enhanced by incorporation of polyoxometalate anions into the complex proton acids. This pseudo liquid phase makes it possible for nearly all mobile protons to take part in the catalysis process. Carbonaceous materials which are obtained after sulfonation show promising catalytic activity towards the transesterification process. Another promising heterogeneous acid catalyst used for FAME production is vanadium phosphate. Furthermore, biocatalysts are receiving attention for large-scale FAME production in which lipase is the most common one used successfully This review critically describes the most important homogeneous and heterogeneous catalysts used in the current FAME production, with future directions for their use.


2019 ◽  
Vol 62 (2) ◽  
pp. 467-474 ◽  
Author(s):  
Stanley Anderson ◽  
Terry Walker ◽  
Bryan Moser ◽  
Caye Drapcho ◽  
Yi Zheng ◽  
...  

Abstract. Eversa Transform was used as an enzymatic catalyst to transform glandless and crude (heavy pigment) cottonseed oils into biodiesel. The oils were reacted with methanol at a 6:1 molar ratio with modified amounts of water, lipase, and temperature. Reactions were conducted in the presence of lipase and water at doses of 2, 5, and 8 wt% and 1, 3, and 6 wt%, respectively. Product composition and conversion were determined using the gas chromatography method of ASTM D6584. Oxidative stability was determined following EN 15751. The conversion to fatty acid methyl esters averaged 98.5% across all samples. Temperature had the most significant effect on conversion (p < 0.0035). Lipase and water dosages did not affect conversion, while each had an effect with temperature that was significant across the difference between 3 and 1 wt% water content and between 8 and 5 wt% enzyme content between the two temperatures (p = 0.0018 and 0.0153), respectively. Induction periods (oxidative stability) of the glandless and crude cottonseed oils were significantly different, but there was no difference between the two oil conversions based on oil type. Keywords: Biodiesel, Cottonseed oil, Fatty acid methyl esters, Lipase, Oxidative stability, Transesterification.


2015 ◽  
Vol 787 ◽  
pp. 766-770 ◽  
Author(s):  
J. Thangaraja ◽  
S. Rajkumar

Biodiesel is a renewable fuel and an attractive alternative to replace fossil diesel without major engine modifications. However, the emissions of oxides of nitrogen (NOx) from biodiesel fuelled engines are reported to be higher compared to diesel engine. The characteristics of biodiesel are known to depend on their fatty acid methyl ester (FAME) contents which vary with the feedstock. Thus the contribution of saturation and unsaturation of pure components of fatty acid methyl esters on NOx formation warrants a systematic investigation. This paper attempts to relate the composition of biodiesel with NOx formation. For this purpose, the NO formation from pure fatty acid methyl esters are predicted using extended Zeldovich reaction scheme. Also, the experiments are conducted for measuring oxides of nitrogen from a compression ignition engine operated using neat palm and karanja methyl esters and their blends providing biodiesel combinations of varying degree of saturation for investigation. The measured NOx concentrations are compared with the corresponding predictions to affirm the influence of fatty acid methyl ester on engine NOx characteristics. The results clearly indicate that the change in degree of saturation influences the NOx formation and an increase in the degree of saturation of biodiesel decreases the engine NOx emission.


Parasitology ◽  
2013 ◽  
Vol 140 (8) ◽  
pp. 972-985 ◽  
Author(s):  
MAREK GOŁĘBIOWSKI ◽  
MAGDALENA CERKOWNIAK ◽  
MAŁGORZATA DAWGUL ◽  
WOJCIECH KAMYSZ ◽  
MIECZYSŁAWA I. BOGUŚ ◽  
...  

SUMMARYThe composition of the fatty acid methyl ester (FAME) and alcohol fractions of the cuticular and internal lipids of Calliphora vomitoria larvae, pupae and male/female adults was obtained by separating these two fractions by HPLC–LLSD and analysing them quantitatively using GC–MS. Analysis of the cuticular lipids of the worldwide, medically important ectoparasite C. vomitoria revealed 6 FAMEs with odd-numbered carbon chains from C15:0 to C19:0 in the larvae, while internal lipids contained 9 FAMEs ranging from C15:1 to C19:0. Seven FAMEs from C15:0 to C19:0 were identified in the cuticular lipids of the pupae, whereas the internal lipids of the pupae contained 10 FAMEs from C13:0 to C19:0. The cuticular lipids of males and females and also the internal lipids of males contained 5, 7 and 6 FAMEs from C15:0 to C19:0 respectively. Seven FAMEs from C13:0 to C19:0 were identified in the internal lipids of females, and 7, 6, 5 and 3 alcohols were found in the cuticular lipids of larvae, pupae, males and females respectively. Only saturated alcohols with even-numbered carbon chains were present in these lipids. Only 1 alcohol (C22:0) was detected in the internal lipids of C. vomitoria larvae, while just 4 alcohols from – C18:0 to C24:0 – were identified in the internal lipids of pupae, and males and females. We also identified glycerol and cholesterol in the larvae, pupae, males and females of C. vomitoria. The individual alcohols and FAMEs, as well as their mixtures isolated from the cuticular and internal lipids of larvae, pupae, males and females of C. vomitoria, demonstrated antimicrobial activity against entomopathogenic fungi.


2016 ◽  
Vol 723 ◽  
pp. 610-615 ◽  
Author(s):  
Natta Pimngern ◽  
Vittaya Punsuvon

Crude coconut oil with high free fatty acid (FFA) content was used as a raw material to produce biodiesel. In this work, the esterification followed by transesterification of crude coconut oil with methanol is studied. The response surface methodology (RSM) with 5-level-3-factor central composite design (CCD) was applied to study the effect of different factors on the FFA content of esterification and the percentage of fatty acid methyl ester (FAME) conversion of transesterification. The FAME conversion was detected by proton magnetic resonance (1H-NMR) spectrometer. As a result, the optimum conditions for esterification were 6:1 of methanol-to-oil molar ratio, 0.75wt% of sulfuric acid (H2SO4) concentration and 90 min of reaction time. The optimum conditions for transesterification were 8.23:1 of methanol-to-oil molar ratio, 0.75wt% of sodium hydroxide (NaOH) concentration and 80 min of reaction time. Quadratic model equations were obtained describing the relationships between dependents and independent variables to minimize the FFA content and maximize the FAME conversion. Fuel properties of the crude coconut oil biodiesel were also examined followed ASTM and EN standards. The results showed that all properties met well with both standards.


Sign in / Sign up

Export Citation Format

Share Document