scholarly journals Enhanced Catalytic Hydrogen Peroxide Production from Hydroxylamine Oxidation on Modified Activated Carbon Fibers: The Role of Surface Chemistry

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Wei Song ◽  
Ran Zhao ◽  
Lin Yu ◽  
Xiaowei Xie ◽  
Ming Sun ◽  
...  

Herein, direct production of hydrogen peroxide (H2O2) through hydroxylamine (NH2OH) oxidation by molecular oxygen was greatly enhanced over modified activated carbon fiber (ACF) catalysts. We revealed that the higher content of pyrrolic/pyridone nitrogen (N5) and carboxyl-anhydride oxygen could effectively promote the higher selectivity and yield of H2O2. By changing the volume ratio of the concentrated H2SO4 and HNO3, the content of N5 and surface oxygen containing groups on ACF were selectively tuned. The ACF catalyst with the highest N5 content and abundant carboxyl-anhydride oxygen containing groups was demonstrated to have the highest activity toward catalytic H2O2 production, enabling the selectivity of H2O2 over 99.3% and the concentration of H2O2 reaching 123 mmol/L. The crucial effects of nitrogen species were expounded by the correlation of the selectivity of H2O2 with the content of N5 from X-ray photoelectron spectroscopy (XPS). The possible reaction pathway over ACF catalysts promoted by N5 was also shown.

2004 ◽  
Vol 28 (12) ◽  
pp. 1431 ◽  
Author(s):  
Wei-Liang Feng ◽  
Yong Cao ◽  
Nan Yi ◽  
Wei-Lin Dai ◽  
Kang-Nian Fan

2011 ◽  
Vol 109 ◽  
pp. 125-130
Author(s):  
Jie Fu ◽  
Ying Chun Yan ◽  
Jing Zhang

The Mn loaded ACF (ACF-Mn), prepared by impregnation method combined with activation method under high temperature, can be used to adsorb the low concentration SO2. The modified ACF was characterized by iodine value and functional groups. The adsorption properties of low concentration SO2 on ACF-Mn-Cu50 were also studied. The result showed that the adsorption properties were improved with the granular Cu. Amount of Mn particles attached to the surface of ACF and the desulfurization rate of ACF-Mn-Cu50 both increased after second modification when the adsorption temperature was 60°C, the air velocity was Q1=0.3 L/min and Q2=0.4 L/min respectively and the concentration of SO2 was 0.62×10-4 μg/ml.


2012 ◽  
Vol 518-523 ◽  
pp. 2099-2103
Author(s):  
Guang Zhou Qu ◽  
Hai Bing Ji ◽  
Ran Xiao ◽  
Dong Li Liang

The activated carbon fiber (ACF) was treated by different concentration nitric acid (HNO3) and hydrogen peroxide (H2O2) oxidization to enhance its adsorption capacity to hexavalent chromium (Cr6+) ion. The adsorption amount and adsorption kinetics of Cr6+ion on ACFs, and the surface chemical groups were investigated. The results showed that the modified ACFs with 1% HNO3and 10% H2O2had a better adsorption capacity, respectively. The adsorption amount of ACFs was affected strongly solution pH value, and decreased significantly with increasing of the pH value. The adsorption kinetics indicated that the adsorption rates of Cr6+ ion on different modified ACFs were well fitted with the pseudo-second-order kinetic model. After 1% HNO3and 10% H2O2modification, respectively, the total acidic oxygen-containing groups on ACFs surface had an increase obviously, which might be enhance the adsorption amount of Cr6+ion on ACFs.


Blood ◽  
1977 ◽  
Vol 49 (3) ◽  
pp. 437-444 ◽  
Author(s):  
MF Tsan ◽  
KH Douglass ◽  
PA McIntyre

Abstract The effects of bacterial neuraminidase on production of hydrogen peroxide (H2O2) and killing of Staphylococcus aureus by human polymorphonuclear leukocytes (PMN) were studied. The concentration of H2O2 was measured by the disappearance of scopoletin fluorescence in the presence of horseradish peroxidase. The results indicated that desialylation of human PMN inhibited the stimulation of H2O2 production during phagocytosis. It also markedly impaired the killing of S. aureus. Impaired killing of S. aureus by desialylated PMN was due to impaired intracellular killing rather than defective phagocytosis.


1992 ◽  
Vol 26 (3-4) ◽  
pp. 665-671 ◽  
Author(s):  
K. Kutics ◽  
M. Suzuki

Activated carbon fiber (ACF) was used as a model of commercial activated carbons to examine the effect of surface chemistry on the attachment behavior of bacterial biomass. Surface acidity was found to enhance the biomass-ACF interaction. When ACFs were applied as biomass support media in a continuous stirred tank reactor, surface acidity of the carbon resulted in faster biomass growth in the start-up phase. The start-up phase was simulated by a simple biomass attachment kinetics model. Experimental and calculated data show a reasonable agreement, with the exception of the hydrogenated specimen, which was interpreted by assuming that the hydrogen-reduced surface is highly reactive and then may undergo oxidation in the initial phase of operation so that the adsorption characteristics are altered.


2000 ◽  
Vol 196 (2) ◽  
pp. 366-374 ◽  
Author(s):  
Venkatesan V. Krishnan ◽  
Alexandre G. Dokoutchaev ◽  
Mark E. Thompson

2019 ◽  
Vol 146 ◽  
pp. 351-361
Author(s):  
Xiaocai Yu ◽  
Hang Yang ◽  
Jinghua Liu ◽  
Liping Wang ◽  
Meichen Gu

Sign in / Sign up

Export Citation Format

Share Document