scholarly journals Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 275 ◽  
Author(s):  
Miao Liu ◽  
Yanhui Yi ◽  
Li Wang ◽  
Hongchen Guo ◽  
Annemie Bogaerts

Due to the increasing emission of carbon dioxide (CO2), greenhouse effects are becoming more and more severe, causing global climate change. The conversion and utilization of CO2 is one of the possible solutions to reduce CO2 concentrations. This can be accomplished, among other methods, by direct hydrogenation of CO2, producing value-added products. In this review, the progress of mainly the last five years in direct hydrogenation of CO2 to value-added chemicals (e.g., CO, CH4, CH3OH, DME, olefins, and higher hydrocarbons) by heterogeneous catalysis and plasma catalysis is summarized, and research priorities for CO2 hydrogenation are proposed.

Author(s):  
Rajasekaran Elakkiya ◽  
Govindhan Maduraiveeran

Design of high-performance and Earth-abundant electrocatalysts for electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) into fuels and value-added chemicals offers an emergent pathway for environment and energy sustainable concerns. Herein,...


2019 ◽  
Vol 3 (3) ◽  
Author(s):  
Sri Walyoto

This article analyzes the loss of carbon dioxide (CO2) released in the forest conversion to oil palm plantations. This research data gathered from the relevant secondary data and relate published reports. This research finds that a loss of release of carbon dioxide (CO2) per hectare of US $ 9,800 with a carbon price of USD2 of US $ 14,000 carbon price of USD3 and US $ 19,600 in carbon price of USD4. In addition, this conversion also has a significant impact on global warming (GWP) and global climate change. Keywords: oil palm plantation, CO2 release, GWP, climate change. 


2008 ◽  
Vol 8 (2) ◽  
pp. 7373-7389 ◽  
Author(s):  
A. Stohl

Abstract. Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.


Author(s):  
Chuqian Xiao ◽  
Ling Cheng ◽  
Yating Wang ◽  
Jinze Liu ◽  
Rongzhen Chen ◽  
...  

Anodic selective electro‐oxidation of methanol paring with cathodic carbon dioxide (CO2) reduction is regarded as a promising strategy to generate value added formate product. We firstly design a 3D‐assembled NiCo...


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 413 ◽  
Author(s):  
Silvia Mena ◽  
Iluminada Gallardo ◽  
Gonzalo Guirado

Carbon dioxide (CO2) is a known greenhouse gas, and is the most important contributor to global warming. Therefore, one of the main challenges is to either eliminate or reuse it through the synthesis of value-added products, such as carboxylated derivatives. One of the most promising approaches for activating, capturing, and valorizing CO2 is the use of electrochemical techniques. In the current manuscript, we described an electrocarboxylation route for synthesizing 4-cyanobenzoic acid by valorizing CO2 through the synergistic use of electrochemical techniques (“green technology”) and ionic liquids (ILs) (“green solvents”)—two of the major entries in the general green chemistry tool kit. Moreover, the use of silver cathodes and ILs enabled the electrochemical potential applied to be reduced by more than 0.4 V. The “green” synthesis of those derivatives would provide a suitable environmentally friendly process for the design of plasticizers based on phthalate derivatives.


2019 ◽  
Vol 48 (4) ◽  
pp. 935-944 ◽  
Author(s):  
Yu Chen ◽  
Laurent Serteyn ◽  
Zhenying Wang ◽  
KangLai He ◽  
Frederic Francis

Abstract In the current context of global climate change, atmospheric carbon dioxide (CO2) concentrations are continuously rising with potential influence on plant–herbivore interactions. The effect of elevated CO2 (eCO2) on feeding behavior of corn leaf aphid, Rhopalosiphum maidis (Fitch) on barley seedlings Hordeum vulgare L. was tracked using electrical penetration graph (EPG). The nutrient content of host plant and the developmental indexes of aphids under eCO2 and ambient CO2 (aCO2) conditions were also investigated. Barley seedlings under eCO2 concentration had lower contents of crude protein and amino acids. EPG analysis showed the plants cultivated under eCO2 influenced the aphid feeding behavior, by prolonging the total pre-probation time of the aphids (wandering and locating the feeding site) and the ingestion of passive phloem sap. Moreover, fresh body weight, fecundity and intrinsic population growth rate of R. maidis was significantly decreased in eCO2 in contrast to aCO2 condition. Our findings suggested that changes in plant nutrition caused by eCO2, mediated via the herbivore host could affect insect feeding behavior and population dynamics.


2020 ◽  
Vol 20 (14) ◽  
pp. 8501-8510 ◽  
Author(s):  
Bo Zheng ◽  
Frédéric Chevallier ◽  
Philippe Ciais ◽  
Grégoire Broquet ◽  
Yilong Wang ◽  
...  

Abstract. In order to track progress towards the global climate targets, the parties that signed the Paris Climate Agreement will regularly report their anthropogenic carbon dioxide (CO2) emissions based on energy statistics and CO2 emission factors. Independent evaluation of this self-reporting system is a fast-growing research topic. Here, we study the value of satellite observations of the column CO2 concentrations to estimate CO2 anthropogenic emissions with 5 years of the Orbiting Carbon Observatory-2 (OCO-2) retrievals over and around China. With the detailed information of emission source locations and the local wind, we successfully observe CO2 plumes from 46 cities and industrial regions over China and quantify their CO2 emissions from the OCO-2 observations, which add up to a total of 1.3 Gt CO2 yr−1 that accounts for approximately 13 % of mainland China's annual emissions. The number of cities whose emissions are constrained by OCO-2 here is 3 to 10 times larger than in previous studies that only focused on large cities and power plants in different locations around the world. Our satellite-based emission estimates are broadly consistent with the independent values from China's detailed emission inventory MEIC but are more different from those of two widely used global gridded emission datasets (i.e., EDGAR and ODIAC), especially for the emission estimates for the individual cities. These results demonstrate some skill in the satellite-based emission quantification for isolated source clusters with the OCO-2, despite the sparse sampling of this instrument not designed for this purpose. This skill can be improved by future satellite missions that will have a denser spatial sampling of surface emitting areas, which will come soon in the early 2020s.


2020 ◽  
Vol 5 (2) ◽  
pp. 486-519 ◽  
Author(s):  
Vignesh Kumaravel ◽  
John Bartlett ◽  
Suresh C. Pillai

2017 ◽  
Vol 5 (13) ◽  
pp. 6219-6225 ◽  
Author(s):  
Liwen Hu ◽  
Yang Song ◽  
Jianbang Ge ◽  
Jun Zhu ◽  
Zhenchao Han ◽  
...  

As part of the efforts to address global climate change, the identification of methods for the capture of carbon dioxide and its selective electrochemical conversion into value-added carbonaceous materials in molten salt electrolytes is a research topic of scientific and technological significance.


Sign in / Sign up

Export Citation Format

Share Document