scholarly journals Improvement of Methane Combustion Activity for Pd/ZrO2 Catalyst by Simple Reduction/Reoxidation Treatment

Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 838 ◽  
Author(s):  
Chansong Kim ◽  
Eunpyo Hong ◽  
Chae-Ho Shin

The improvement of methane combustion activity was observed in cyclic temperature-programed and isothermal reactions over Pd/ZrO2 catalysts by simple reduction/reoxidation treatment. The catalytic activity increased during the initial stages of isothermal reaction, and the light-off temperature was lowered as the number of cycles increased in the cyclic temperature-programed reaction. To reveal the origin of activation, variations in the reduction properties after the activation period were carefully investigated through CH4 temperature-programed reduction (TPR) measurements. From the CH4-TPR results, it was confirmed that the reduction temperature decreased significantly after activation. The observation of the CH4-TPR peak at relatively low temperatures is directly proportional to the catalytic activity of CH4 combustion. It was therefore concluded that repeated reduction/reoxidation occurred in the reactant stream, and this phenomenon allowed the combustion reaction to proceed more easily at lower temperatures.

Author(s):  
Chansong Kim ◽  
Eunpyo Hong ◽  
Chae-Ho Shin

The improvement of the methane combustion activity was observed in cyclic temperature-programmed and isothermal reactions over Pd/ZrO2 catalysts by simple reduction/re-oxidation treatment. The catalytic activity increased during the initial stages of isothermal reaction, and the light-off temperature was lowered as the number of cycles increased in the cyclic temperature-programmed reaction. To reveal the origin of activation, variations in the reduction properties after the activation period were carefully investigated through CH4 temperature-programmed reduction (TPR) measurements. From the CH4-TPR results, it was confirmed that the reduction temperature decreased significantly after activation. The observation of the CH4-TPR peak at relatively low temperatures is directly proportional to the catalytic activity of CH4 combustion. It was therefore concluded that repeated reduction/re-oxidation occurred in the reactant stream, and this phenomenon allowed the combustion reaction to proceed more easily at lower temperatures.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 772
Author(s):  
Yanxiong Liu ◽  
Changhua Hu ◽  
Longchun Bian

The correlation between the occurrence state of surface Pd species of Pd/CeO2 for lean CH4 combustion is investigated. Herein, by using a reduction-deposition method, we have synthesized a highly active 0.5% PdO/CeO2-RE catalyst, in which the Pd nanoparticles are evenly dispersed on the CeO2 nanorods CeO2-R. Based on comprehensive characterization, we have revealed that the uniformly dispersed Pd nanoparticles with a particle size distribution of 2.3 ± 0.6 nm are responsible for the generation of PdO and PdxCe1−xO2−δ phase with –Pd2+–O2−–Ce4+– linkage, which can easily provide oxygen vacancies and facilitate the transfer of reactive oxygen species between the CeO2-R and Pd species. As a consequence, the remarkable catalytic activity of 0.5% Pd/CeO2-RE is related to the high concentration of PdO species on the surface of the catalyst and the synergistic interaction between the Pd species and the CeO2 nanorod.


1998 ◽  
Vol 45 (1-4) ◽  
pp. 173-178 ◽  
Author(s):  
Kohji Narui ◽  
Keiichi Furuta ◽  
Hirohide Yata ◽  
Akio Nishida ◽  
Yasuhiko Kohtoku ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 88
Author(s):  
Diana García-Pérez ◽  
Maria Consuelo Alvarez-Galvan ◽  
Jose M. Campos-Martin ◽  
Jose L. G. Fierro

Catalysts based on zirconia- and alumina-supported tungsten oxides (15 wt % W) with a small loading of platinum (0.3 wt % Pt) were selected to study the influence of the reduction temperature and the nature of the support on the hydroisomerization of n-dodecane. The reduction temperature has a major influence on metal dispersion, which impacts the catalytic activity. In addition, alumina and zirconia supports show different catalytic properties (mainly acid site strength and surface area), which play an important role in the conversion. The NH3-TPD profiles indicate that the acidity in alumina-based catalysts is clearly higher than that in their zirconia counterparts; this acidity can be attributed to a stronger interaction of the WOx species with alumina. The PtW/Al catalyst was found to exhibit the best catalytic performance for the hydroisomerization of n-dodecane based on its higher acidity, which was ascribed to its larger surface area relative to that of its zirconia counterparts. The selectivity for different hydrocarbons (C7–10, C11 and i-C12) was very similar for all the catalysts studied, with branched C12 hydrocarbons being the main products obtained (~80%). The temperature of 350 °C was clearly the best reduction temperature for all the catalysts studied in a trickled-bed-mode reactor.


2021 ◽  
Vol 87 (9) ◽  
pp. 59-67
Author(s):  
A. A. Khlybov ◽  
Yu. G. Kabaldin ◽  
M. S. Anosov ◽  
D. A. Ryabov ◽  
D. A. Shatagin

The evolution of the structure and assessment of the age limit of steel 12Cr18Ni10Ti upon fatigue loading is considered using neural network modeling and approaches of fractal analysis of the microstructure. An algorithm for processing images of the microstructures has been developed to improve their quality. An indicator of the fractal dimension of the image is used as a quantitative indicator for assessing the evolution of the microstructure of the surface metal layer. A quantitative assessment of the structures at different stress amplitudes is carried out in a wide range of low temperatures using the fractal dimension index. Correlation of the fractal dimension index with the run of the sample material is shown. The appearance of the main crack was observed in the range of 0.7 - 0.8 from the number of cycles to failure, after which the crack growth rate increased. At a lower temperature, the main crack is formed later, but further loading results in a higher crack growth rate. Formation of the secondary phases in austenitic steel at a lower temperature occurred at earlier stages than that at a temperature of t = +20°C, which led to hardening of the material. An artificial neural network (ANN) has been developed and trained for assessing structural changes in metal proceeding from the fractal dimensionality of the microstructure images at different stages of fatigue loading. The developed neural network made it possible to estimate with a sufficiently high accuracy the number of cycles before damage of the sample and the residual life of the material. Thus, the developed ANN can be used to assess the current state of the material in a wide range of low temperatures.


2021 ◽  
Author(s):  
Yuki Omori ◽  
Ayaka Shigemoto ◽  
Kohei Sugihara ◽  
Takuma Higo ◽  
Toru Uenishi ◽  
...  

Pd catalyst (Pd/Ce<sub>0.7</sub>Zr<sub>0.3</sub>O<sub>2</sub>) in an electric field exhibits extremely high three-way catalytic activity (TWC: NO-C<sub>3</sub>H<sub>6</sub>-CO-O<sub>2</sub>-H<sub>2</sub>O). By applying an electric field to the semiconductor catalyst, low-temperature operation of TWC can be achieved even at 473 K by virtue of the activated surface-lattice oxygen.


Author(s):  
K. S. Hui ◽  
Christopher Y. H. Chao ◽  
C. W. Kwong ◽  
M. P. Wan

This study investigated the performance of multi-transition metal (Cu, Cr, Ni and Co) ions exchanged zeolite 13X catalysts on methane emission abatement, especially at methane level of the exhaust from natural gas fueled vehicles. Catalytic activity of methane combustion using multi-ions exchanged catalyst was studied under different parameters: mole % of metal loading, inlet velocity and inlet methane concentration at atmospheric pressure and 500 °C. Performance of the catalysts was investigated and explained in terms of the apparent activation energy, number of active sites and BET surface area of the catalyst. This study showed that the multi-ions exchanged catalyst outperformed the single-ions exchanged and the acidified 13X catalysts. Lengthening the residence time could also lead to higher methane conversion %. Catalytic activity of the catalysts was influenced by the mole % of metal loading which played important roles in affecting the apparent activation energy of methane combustion, active sites and also the BET surface area of the catalyst. Increasing mole % of metal loading in the catalyst decreased the apparent activation energy for methane combustion and also the BET surface area of the catalyst. In view of these, there existed an optimized mole % of metal loading where the highest catalytic activity was observed.


Sign in / Sign up

Export Citation Format

Share Document