scholarly journals Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 495
Author(s):  
Megan E. Grund ◽  
Jeon Soo ◽  
Christopher K. Cote ◽  
Rita Berisio ◽  
Slawomir Lukomski

Increasing antimicrobial resistance due to misuse and overuse of antimicrobials, as well as a lack of new and innovative antibiotics in development has become an alarming global threat. Preventative therapeutics, like vaccines, are combative measures that aim to stop infections at the source, thereby decreasing the overall use of antibiotics. Infections due to Gram-negative pathogens pose a significant treatment challenge because of substantial multidrug resistance that is acquired and spread throughout the bacterial population. Burkholderia spp. are Gram-negative intrinsically resistant bacteria that are responsible for environmental and nosocomial infections. The Burkholderia cepacia complex are respiratory pathogens that primarily infect immunocompromised and cystic fibrosis patients, and are acquired through contaminated products and equipment, or via patient-to-patient transmission. The Burkholderia pseudomallei complex causes percutaneous wound, cardiovascular, and respiratory infections. Transmission occurs through direct exposure to contaminated water, water-vapors, or soil, leading to the human disease melioidosis, or the equine disease glanders. Currently there is no licensed vaccine against any Burkholderia pathogen. This review will discuss Burkholderia vaccine candidates derived from outer membrane proteins, OmpA, OmpW, Omp85, and Bucl8, encompassing their structures, conservation, and vaccine formulation.

Author(s):  
Marilena Galdiero ◽  
Marco Cantisani ◽  
Rossella Tarallo ◽  
Annarita Falanga ◽  
Stefania Galdiero

2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Elizabeth M. Hart ◽  
Thomas J. Silhavy

ABSTRACT The heteropentomeric β-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of β-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the β-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K), the A-to-P change at position 496 (bamAA496P), and the A-to-S change at position 499 (bamAA499S), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates. IMPORTANCE The folding and insertion of β-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric β-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.


The surface of a gram-negative bacterium is made up of the lipopolysaccharide (l. p. s.) and protein components of the outer leaflet of its outer membrane, and of capsular polysaccharide, flagella and fimbriae if present. In Salmonella all the special genes needed for synthesis of the O-specific oligosaccharide repeat unit (different in each O group) of the l. p. s. sidechains are found in the rfb cluster, near his . Nearly all so-far identified rfa genes, for synthesis of l. p. s. core, are clustered between cysE and pyrE . Genes for polymerization and modification of O units are scattered: some are part of prophage genomes and some show ‘form variation’ – spontaneous alternation between expression and non-expression, mechanism unknown. Escherichia coli differs by frequent presence of capsular polysaccharides (K antigens), some determined by kps genes, unlinked to l. p. s. genes, others by his -linked genes perhaps homologous with rfb . Expression of some non-l. p. s. polysaccharide genes, but not of l. p. s. genes, is greatly influenced by the environment. Major outer membrane proteins (more than 10 5 molec. /bacterium) include: a lipoprotein, in part covalently joined to the cell wall, perhaps anchoring the outer membrane; and several proteins of molec. mass 30000–40000 (one of them phage-determined), some of which serve to make the outer membrane permeable to small hydrophilic molecules. Genes affecting sensitivity (adsorbing capacity) to various phages and colicins (e. g. tonA, bfe ) specify various ‘minor’ outer membrane proteins concerned with uptake of nutrients (e. g. iron ferrichrome, vitamin B 12 ) when present at very low concentrations. Neither the ‘major’ nor the ‘minor’ protein genes are clustered: their expression is subject to conspicuous regulation by environmental conditions. In E. coli the flagellin and hook protein structural genes are located in different clusters of motility-related genes. Missense mutations in the flagellin gene may cause alteration in flagellar shape or in serological character, which in Salmonella is also affected by gene nml , for methylation of the free amino groups of some lysines of flagellin. Electron microscopy of re-annealed DNA from the relevant region indicates that change of flagellar antigenic phase in Salmonella results from a reversible inversion of a 750 base-pair segment, probably constituting the phase-determinant gene. Production of fimbriae (pili) requires function of several linked pil genes, and is subject to a kind of ‘form variation’ of unknown mechanism. Genes in conjugative plasmids when derepressed cause production of sex pili. E. coli protein antigens K88 and K99, apparently fimbrial, concerned with adhesion to intestinal mucosa and so with enteropathogenicity, are plasmid-determined.


Sign in / Sign up

Export Citation Format

Share Document