scholarly journals Terc Gene Cluster Variants Predict Liver Telomere Length in Mice

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2623
Author(s):  
Dana Zeid ◽  
Sean Mooney-Leber ◽  
Laurel R. Seemiller ◽  
Lisa R. Goldberg ◽  
Thomas J. Gould

Variants in a gene cluster upstream-adjacent to TERC on human chromosome 3, which includes genes APRM, LRRC31, LRRC34 and MYNN, have been associated with telomere length in several human populations. Currently, the mechanism by which variants in the TERC gene cluster influence telomere length in humans is unknown. Given the proximity between the TERC gene cluster and TERC (~0.05 Mb) in humans, it is speculated that cluster variants are in linkage disequilibrium with a TERC causal variant. In mice, the Terc gene/Terc gene cluster are also located on chromosome 3; however, the Terc gene cluster is located distantly downstream of Terc (~60 Mb). Here, we initially aim to investigate the interactions between genotype and nicotine exposure on absolute liver telomere length (aTL) in a panel of eight inbred mouse strains. Although we found no significant impact of nicotine on liver aTL, this first experiment identified candidate single nucleotide polymorphisms (SNPs) in the murine Terc gene cluster (within genes Lrrc31, Lrriq4 and Mynn) co-varying with aTL in our panel. In a second experiment, we tested the association of these Terc gene cluster variants with liver aTL in an independent panel of eight inbred mice selected based on candidate SNP genotype. This supported our initial finding that Terc gene cluster polymorphisms impact aTL in mice, consistent with data in human populations. This provides support for mice as a model for telomere dynamics, especially for studying mechanisms underlying the association between Terc cluster variants and telomere length. Finally, these data suggest that mechanisms independent of linkage disequilibrium between the Terc/TERC gene cluster and the Terc/TERC gene mediate the cluster’s regulation of telomere length.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Catherine D. Morffy Smith ◽  
Brittany N. Russ ◽  
Alicer K. Andrew ◽  
Caitlin A. Cooper ◽  
Julie M. Moore

AbstractPlasmodium falciparum infection during pregnancy is a major cause of severe maternal illness and neonatal mortality. Mouse models are important for the study of gestational malaria pathogenesis. When infected with Plasmodium chabaudi chabaudi AS in early gestation, several inbred mouse strains abort at midgestation. We report here that outbred Swiss Webster mice infected with P. chabaudi chabaudi AS in early gestation carry their pregnancies to term despite high parasite burden and malarial hemozoin accumulation in the placenta at midgestation, with the latter associated with induction of heme oxygenase 1 expression. Infection yields reduced fetal weight and viability at term and a reduction in pup number at weaning, but does not influence postnatal growth prior to weaning. This novel model allows for the exploration of malaria infection throughout pregnancy, modeling chronic infections observed in pregnant women prior to the birth of underweight infants and enabling the production of progeny exposed to malaria in utero, which is critical for understanding the postnatal repercussions of gestational malaria. The use of outbred mice allows for the exploration of gestational malaria in a genetically diverse model system, better recapitulating the diversity of infection responses observed in human populations.


2001 ◽  
Vol 69 (1) ◽  
pp. 426-434 ◽  
Author(s):  
Neill A. Gingles ◽  
Janet E. Alexander ◽  
Aras Kadioglu ◽  
Peter W. Andrew ◽  
Alison Kerr ◽  
...  

ABSTRACT From a panel of nine inbred mice strains intranasally infected withStreptococcus pneumoniae type 2 strain, BALB/c mice were resistant and CBA/Ca and SJL mice were susceptible to infection. Further investigation revealed that BALB/c mice were able to prevent proliferation of pneumococci in the lungs and blood, whereas CBA/Ca mice showed no bacterial clearance. Rapidly increasing numbers of bacteria in the blood was a feature of CBA/Ca but not BALB/c mice. In the lungs, BALB/c mice recruited significantly more neutrophils than CBA/Ca mice at 12 and 24 h postinfection. Inflammatory lesions in BALB/c mice were visible much earlier than in CBA/Ca mice, and there was a greater cellular infiltration into the lung tissue of BALB/c mice at the earlier time points. Our data suggest that resistance or susceptibility to intranasal pneumococci may have an association with recruitment and/or function of neutrophils.


2019 ◽  
Vol 4 ◽  
pp. 124
Author(s):  
Barbara Clough ◽  
Ryan Finethy ◽  
Rabia T. Khan ◽  
Daniel Fisch ◽  
Sarah Jordan ◽  
...  

Background: Infections cause the production of inflammatory cytokines such as Interferon gamma (IFNγ). IFNγ in turn prompts the upregulation of a range of host defence proteins including members of the family of guanylate binding proteins (Gbps). In humans and mice alike, GBPs restrict the intracellular replication of invasive microbes and promote inflammation. To study the physiological functions of Gbp family members, the most commonly chosen in vivo models are mice harbouring loss-of-function mutations in either individual Gbp genes or the entire Gbp gene cluster on mouse chromosome 3. Individual Gbp deletion strains differ in their design, as some strains exist on a pure C57BL/6 genetic background, while other strains contain a 129-derived genetic interval encompassing the Gbp gene cluster on an otherwise C57BL/6 genetic background. Methods: To determine whether the presence of 129 alleles of paralogous Gbps could influence the phenotypes of 129-congenic Gbp-deficient strains, we studied the expression of Gbps in both C57BL/6J and 129/Sv mice following in vivo stimulation with adjuvants and after infection with either Toxoplasma gondii or Shigella flexneri. Results: We show that C57BL/6J relative to 129/Sv mice display moderately elevated expression of Gbp2, but more prominently, are also defective for Gbp2b (formerly Gbp1) mRNA induction upon immune priming. Notably, Toxoplasma infections induce robust Gbp2b protein expression in both strains of mice, suggestive of a Toxoplasma-activated mechanism driving Gbp2b protein translation. We further find that the higher expression of Gbp2b mRNA in 129/Sv mice correlates with a gene duplication event at the Gbp2b locus resulting in two copies of the Gbp2b gene on the haploid genome of the 129/Sv strain. Conclusions: Our findings demonstrate functional differences between 129 and C57BL/6 Gbp alleles which need to be considered in the design and interpretation of studies utilizing mouse models, particularly for phenotypes influenced by Gbp2 or Gbp2b expression.


2000 ◽  
Vol 84 (5) ◽  
pp. 2484-2493 ◽  
Author(s):  
Peter V. Nguyen ◽  
Steven N. Duffy ◽  
Jennie Z. Young

Transgenic and knockout mice are used extensively to elucidate the molecular mechanisms of hippocampal synaptic plasticity. However, genetic and phenotypic variations between inbred mouse strains that are used to construct genetic models may confound the interpretation of cellular neurophysiological data derived from these models. Using in vitro slice stimulation and recording methods, we compared the membrane biophysical, cellular electrophysiological, and synaptoplastic properties of hippocampal CA1 neurons in four specific strains of inbred mice: C57BL/6J, CBA/J, DBA/2J, and 129/SvEms/J. Hippocampal long-term potentiation (LTP) induced by theta-pattern stimulation, and by repeated multi-burst 100-Hz stimulation at various interburst intervals, was better maintained in area CA1 of slices from BL/6J mice than in slices from CBA and DBA mice. At an interburst interval of 20 s, maintenance of LTP was impaired in CBA and DBA slices, as compared with BL/6J slices. When the interburst interval was reduced to 3 s, induction of LTP was significantly enhanced in129/SvEms slices, but not in DBA and CBA slices. Long-term depression (LTD) was not significantly different between slices from these four strains. For the four strains examined, CA1 pyramidal neurons showed no significant differences in spike-frequency accommodation, membrane input resistance, and number of spikes elicited by current injection. Synaptically-evoked glutamatergic postsynaptic currents did not significantly differ among CA1 pyramidal neurons in these four strains. Since the observed LTP deficits resembled those previously seen in transgenic mice with reduced hippocampal cAMP-dependent protein kinase (PKA) activity, we searched for possible strain-dependent differences in cAMP-dependent synaptic facilitation induced by forskolin (an activator of adenylate cyclase) and IBMX (a phosphodiesterase inhibitor). We found that forskolin/IBMX-induced synaptic facilitation was deficient in area CA1 of DBA/2J and CBA/J slices, but not in BL/6J and 129/SvEms/J slices. These defects in cAMP-induced synaptic facilitation may underlie the deficits in memory, observed in CBA/J and DBA/2J mice, that have been previously reported. We conclude that hippocampal LTP is influenced by genetic background and by the temporal characteristics of the stimulation protocol. The plasticity of hippocampal synapses in some inbred mouse strains may be “tuned” to particular temporal patterns of synaptic activity. From a broader perspective, our data support the notion that strain-dependent variation in genetic background is an important factor that can influence the synaptoplastic phenotypes observed in studies that use genetically modified mice to explore the molecular bases of synaptic plasticity.


Author(s):  
Adelaide Tovar ◽  
Wesley L. Crouse ◽  
Gregory J. Smith ◽  
Joseph M. Thomas ◽  
Benjamin P. Keith ◽  
...  

Acute ozone (O3) exposure is associated with multiple adverse cardiorespiratory outcomes, the severity of which varies across individuals in human populations and inbred mouse strains. However, molecular determinants of response, including susceptibility biomarkers that distinguish who will develop severe injury and inflammation, are not well characterized. We and others have demonstrated that airway macrophages (AMs) are an important resident immune cell type that are functionally and transcriptionally responsive to O3 inhalation. Here, we sought to explore influences of strain, exposure, and strain-by-O3 exposure interactions on AM gene expression and identify transcriptional correlates of O3-induced inflammation and injury across 6 mouse strains, including 5 Collaborative Cross (CC) strains. We exposed adult mice of both sexes to filtered air (FA) or 2 ppm O3 for 3 hours, and measured inflammatory and injury parameters 21 hours later. Mice exposed to O3 developed airway neutrophilia and lung injury with strain-dependent severity. In AMs, we identified a common core O3 response signature across all strains, as well as a set of genes exhibiting strain-by-O3 exposure interactions. In particular, a prominent gene expression contrast emerged between a low- (CC017/Unc) and high-responding (CC003/Unc) strain, as reflected by cellular inflammation and injury. Further inspection indicated that differences in their baseline gene expression and chromatin accessibility profiles likely contributes to their divergent post-O3 exposure transcriptional responses. Together, these results suggest that aspects of O3-induced respiratory responses are mediated through altered AM transcriptional signatures, and further confirms the importance of gene-environment interactions in mediating differential responsiveness to environmental agents.


1978 ◽  
Vol 32 (2) ◽  
pp. 183-193 ◽  
Author(s):  
Steven J. Self ◽  
Bryan G. Winchester ◽  
James R. Archer

SUMMARYTen glycosidases were measured in suspensions of spermatozoa from the vasa deferentia of two inbred mouse strains and their intercrosses. Eight of these glycosidases were associated with the sperm cells and all of these showed genetical variation between the strains except α-l-fucosidase with optimal activity at pH 5·4. In contrast liver enzyme activities showed no significant variation except α-l-fucosidase. Genetic studies indicated that the variation of spermatozoal β-d-hexosaminidase, α-d-mannosidase, α-l-fucosidase and β-d-galactosidase are inherited at autosomal loci and α-d-galactosidase variation shows X-linked inheritance. We propose a new provisional gene symbol (Afuc-2) for a spermatozoal variant of α-l-fucosidase.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Dario Coletti ◽  
Emanuele Berardi ◽  
Paola Aulino ◽  
Eleonora Rossi ◽  
Viviana Moresi ◽  
...  

Recent studies strengthen the belief that physical activity as a behavior has a genetic basis. Screening wheel-running behavior in inbred mouse strains highlighted differences among strains, showing that even very limited genetic differences deeply affect mouse behavior. We extended this observation to substrains of the same inbred mouse strain, that is, BALB/c mice. We found that only a minority of the population of one of these substrains, the BALB/c J, performs spontaneous physical activity. In addition, the runners of this substrain cover a significantly smaller distance than the average runners of two other substrains, namely, the BALB/c ByJ and the BALB/c AnNCrl. The latter shows a striking level of voluntary activity, with the average distance run/day reaching up to about 12 kilometers. These runners are not outstanders, but they represent the majority of the population, with important scientific and economic fallouts to be taken into account during experimental planning. Spontaneous activity persists in pathological conditions, such as cancer-associated cachexia. This important amount of physical activity results in a minor muscle adaptation to endurance exercise over a three-week period; indeed, only a nonsignificant increase in NADH transferase+ fibers occurs in this time frame.


Blood ◽  
2006 ◽  
Vol 108 (9) ◽  
pp. 3061-3067 ◽  
Author(s):  
Heidi L. Lemmerhirt ◽  
Jordan A. Shavit ◽  
Gallia G. Levy ◽  
Suzanne M. Cole ◽  
Jeffrey C. Long ◽  
...  

Abstract Both genetic and environmental influences contribute to the wide variation in plasma von Willebrand factor (VWF) levels observed in humans. Inbred mouse strains also have highly variable plasma VWF levels, providing a convenient model in which to study genetic modifiers of VWF. Previously, we identified a major modifier of VWF levels in the mouse (Mvwf1) as a regulatory mutation in murine Galgt2. We now report the identification of an additional murine VWF modifier (Mvwf2). Mvwf2 accounts for approximately 16% of the 8-fold plasma VWF variation (or ∼ 25% of the genetic variation) observed between the A/J and CASA/RkJ strains and maps to the murine Vwf gene itself. Twenty SNPs were identified within the coding regions of the A/J and CASA/RkJ Vwf alleles, and in vitro analysis of recombinant VWF demonstrated that a single SNP (+7970G>A) and the associated nonsynonymous amino acid change (R2657Q) confers a significant increase in VWF biosynthesis from the CASA/RkJ Vwf allele. This change appears to represent a unique gain of function that likely explains the mechanism of Mvwf2 in vivo. The identification of a natural Vwf gene variant among inbred mice affecting biosynthesis suggests that similar genetic variation may contribute to the wide range of VWF levels observed in humans.


2012 ◽  
Vol 80 (5) ◽  
pp. 1846-1852 ◽  
Author(s):  
Britton J. Grasperge ◽  
Kathryn E. Reif ◽  
Timothy D. Morgan ◽  
Piyanate Sunyakumthorn ◽  
Joseph Bynog ◽  
...  

ABSTRACTRickettsia parkeri, a member of the spotted fever groupRickettsia, is the causative agent of American boutonneuse fever in humans. Despite the increased recognition of human cases, limited information is available regarding the infection of invertebrate and vertebrate hosts for this emerging tick-borne disease. Toward the development of a viable transmission model and to further characterize the pathology associated withR. parkeriinfection, inbred mouse strains (A/J, BALB/c, C3H/HeJ, and C3H/HeN) were intravenously and intradermally inoculated with 105low-passage-numberR. parkeri(Portsmouth strain), and infection, gross pathology, and histopathology were scored. Additionally, a quantitative real-time PCR (qPCR) was performed to estimate rickettsial load in heart, lung, spleen, and liver tissues of infected mice at 19 days postinoculation. Of the A/J, BALB/c, and C3H/HeN mice, none displayed universal pathology consistent with sustained infection. Compared to age-matched control mice, the intravenously inoculated C3H/HeJ mice exhibited marked facial edema and marked splenomegaly upon gross examination, while the intradermally inoculated mice developed characteristic eschar-like lesions. The C3H/HeJ mice also exhibited the greatest concentrations of rickettsial DNA from heart, lung, liver, and spleen samples when examined by qPCR. The similarity of the pathology of human disease and sustained infection suggests that the C3H/HeJ strain of mice is a promising candidate for subsequent experiments to examine the tick transmission, dissemination, and pathology ofR. parkeririckettsiosis.


2000 ◽  
pp. 1-8 ◽  
Author(s):  
M Ludgate

Graves' disease (GD) is an autoimmune condition in which goitre and hyperthyroidism are induced by thyroid stimulating antibodies (TSAB) which mimic the action of thyrotrophin (TSH). The target of the autoimmune response is the thyrotrophin receptor (TSHR) and, since its cloning, a number of differing approaches have been adopted in an attempt to develop an animal model of GD. Methods in which synthetic peptides or fragments of the receptor produced in bacteria or insect cells have been injected into animals together with immunological adjuvants have had only limited success in inducing some of the signs and symptoms of GD. Genetic immunisation resulted in thyroiditis in the majority, but TSAB formation in only a minority, of treated inbred mice. Transfer of receptor in vitro primed T cells to syngeneic naive recipients, with priming either using a bacterial fusion protein or genetic immunisation, induced destructive thyroiditis in non-obese diabetic (NOD) mice but lymphocytic thyroiditis in BALBc mice. Furthermore, the orbits of 17/22 of the BALBc animals, but not the NOD animals, with thyroiditis had orbital changes similar to those seen in thyroid eye disease. TSAB and elevated thyroxine levels were induced in AKR/N mice injected with fibroblasts expressing the full length human TSHR and murine major histocompatibility complex (MHC) class II homologous to the recipient mice. No thyroiditis was induced but preliminary results from a different group using the same protocol suggest that receptor autoantibodies and thyroid dysfunction could be transferred using T cells primed in vitro with the receptor and MHC-II expressing cells. The majority of the studies described above have studied inbred mouse strains. In a novel departure, the NMR outbred strain has been treated by genetic immunisation with very promising results, including the induction of increased thyroxine levels in 4/30 female mice, accompanied by TSAB in addition to thyroiditis, and with signs of hyperactivity and orbital pathology. This review discusses the various protocols together with the information regarding the pathogenesis of GD which each has contributed, and concludes with an evaluation of how close we are to mimicking this polygenic, multifactorial disease.


Sign in / Sign up

Export Citation Format

Share Document