scholarly journals Remnant of Unrelated Amniote Sex Chromosomal Linkage Sharing on the Same Chromosome in House Gecko Lizards, Providing a Better Understanding of the Ancestral Super-Sex Chromosome

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2969
Author(s):  
Worapong Singchat ◽  
Thitipong Panthum ◽  
Syed Farhan Ahmad ◽  
Sudarath Baicharoen ◽  
Narongrit Muangmai ◽  
...  

Comparative chromosome maps investigating sex chromosomal linkage groups in amniotes and microsatellite repeat motifs of a male house gecko lizard (Hemidactylus frenatus, HFR) and a flat-tailed house gecko lizard (H. platyurus, HPL) of unknown sex were examined using 75 bacterial artificial chromosomes (BACs) from chicken and zebra finch genomes. No massive accumulations of microsatellite repeat motifs were found in either of the gecko lizards, but 10 out of 13 BACs mapped on HPL chromosomes were associated with other amniote sex chromosomes. Hybridization of the same BACs onto multiple different chromosome pairs suggested transitions to sex chromosomes across amniotes. No BAC hybridization signals were found on HFR chromosomes. However, HFR diverged from HPL about 30 million years ago, possibly due to intrachromosomal rearrangements occurring in the HFR lineage. By contrast, heterochromatin likely reshuffled patterns between HPL and HFR, as observed from C-positive heterochromatin distribution. Six out of ten BACs showed partial homology with squamate reptile chromosome 2 (SR2) and snake Z and/or W sex chromosomes. The gecko lizard showed shared unrelated sex chromosomal linkages—the remnants of a super-sex chromosome. A large ancestral super-sex chromosome showed a correlation between SR2 and snake W sex chromosomes.

1989 ◽  
Vol 53 (2) ◽  
pp. 77-86 ◽  
Author(s):  
I.-D. Adler ◽  
R. Johannisson ◽  
H. Winking

SummaryA Robertsonian translocation in the mouse between theXchromosome and chromosome 2 is described. The male and female carriers of the Rb(X.2)2Ad were fertile. A homozygous/hemizygous line was maintained. The influence of theX-autosomal Robertsonian translocation on anaphase I non-disjunction in male mice was studied by chromosome counts in cells at metaphase II of meoisis and by assessment of aneuploid progeny. The results conclusively show that the inclusion of Rb2Ad in the male genome induces non-disjunction at the first meoitic division. In second metaphase cells the frequency of sex-chromosomal aneuploidy was 10·8%, and secondary spermatocytes containing two or no sex chromosome were equally frequent. The Rb2Ad males sired 3·9% sex-chromosome aneuploid progeny. The difference in aneuploidy frequencies in the germ cells and among the progeny suggests that the viability of XO and XXY individuals is reduced. The pairing configurations of chromosomes 2, Rb2Ad andYwere studied during meiotic prophase by light and electron microscopy. Trivalent pairing was seen in all well spread nuclei. Complete pairing of the acrocentric autosome 2 with the corresponding segment of the Rb2Ad chromosome was only seen in 3·2% of the cells analysed in the electron microscope. The pairing between theXand theYchromosome in the Rb2Ad males corresponded to that in males with normal karyotype. Reasons for sex-chromosomal non-disjunction despite the normal pairing pattern between the sex chromosomes may be seen in the terminal chiasma location coupled with the asynchronous separation of the sex chromosomes and the autosomes. The Rb2Ad chromosome can be useful for studies ofXinactivation, as a marker for parental derivation of theXchromosome and for mapping loci byin situhybridization.


Author(s):  
Paris Veltsos ◽  
Guillaume Cossard ◽  
Emmanuel Beaudoing ◽  
Genséric Beydon ◽  
Camille Roux ◽  
...  

Many dioecious plants have sex chromosomes that are cytologically heteromorphic, but about half of species lack cytological differences between males and females and are thus homomorphic. Very little is known about the size and content of the non-recombining sex-determining region (SDR) in these species. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua, which has homomorphic sex chromosomes and shows signatures of mild Y-chromosome degeneration. We used RNAseq to identify new Y-linked markers for M. annua. Twelve of 24 transcripts with male-specific and male-biased expression could only be PCR-amplified from males and are thus Y-linked. We found a further six Y-linked sequences that were present in males but not females using genome capture data from multiple populations. We used the Y-linked sequences to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequence, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests it is enriched for repeats, has a low gene density and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which is estimated to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, especially given the small genome size of M. annua. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.


2020 ◽  
Vol 111 (3) ◽  
pp. 307-313 ◽  
Author(s):  
Stuart V Nielsen ◽  
Brendan J Pinto ◽  
Irán Andira Guzmán-Méndez ◽  
Tony Gamble

Abstract Squamate reptiles (lizards, snakes, and amphibians) are an outstanding group for studying sex chromosome evolution—they are old, speciose, geographically widespread, and exhibit myriad sex-determining modes. Yet, the vast majority of squamate species lack heteromorphic sex chromosomes. Cataloging the sex chromosome systems of species lacking easily identifiable, heteromorphic sex chromosomes, therefore, is essential before we are to fully understand the evolution of vertebrate sex chromosomes. Here, we use restriction site-associated DNA sequencing (RADseq) to classify the sex chromosome system of the granite night lizard, Xantusia henshawi. RADseq is an effective alternative to traditional cytogenetic methods for determining a species’ sex chromosome system (i.e., XX/XY or ZZ/ZW), particularly in taxa with non-differentiated sex chromosomes. Although many xantusiid lineages have been karyotyped, none possess heteromorphic sex chromosomes. We identified a ZZ/ZW sex chromosome system in X. henshawi—the first such data for this family. Furthermore, we report that the X. henshawi sex chromosome contains fragments of genes found on Gallus gallus chromosomes 7, 12, and 18 (which are homologous to Anolis carolinensis chromosome 2), the first vertebrate sex chromosomes to utilize this linkage group.


1982 ◽  
Vol 60 (11) ◽  
pp. 2852-2865 ◽  
Author(s):  
William S. Procunier

Cytological descriptions and phylogenetic relationships are presented for 10 blackfly taxa in Metacnephia. These descriptions are given in terms of standard polytene chromosome maps based on M. pallipes. All members are male chiasmate and differ from related Cnephia by a whole arm interchange between chromosomes I and II. Sex chromosome differentiation varies from undefined changes resulting in a short, nonpairing centromeric segment in X0Y1 males of M. amphora to a complex system in M. borealis. The latter system involves Y chromosome differentiation by associated inversions and sex linkage of the nucleolar organizer (NO). Metacnephia borealis exhibits a sex bias in NO expression with excess expression in females and an apparent conversion phenomenon which dosage compensates males. The closest members of Metacnephia differ only in their sex chromosomes and share floating inversions; more distant taxa differ by fixed inversions as well as sex chromosomes. IIIS-1, IIIS-2, and IIIS-3 may be polymorphic, sex linked, or fixed in different species of the group. Nonhomology of sex chromosomes of different species, association of the sex locus and NO, and presence of an identical supernumerary block on nonhomologous chromosomes indicate a mobility phenomenon for certain loci.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 861 ◽  
Author(s):  
Kazumi Matsubara ◽  
Denis O’Meally ◽  
Stephen D. Sarre ◽  
Arthur Georges ◽  
Kornsorn Srikulnath ◽  
...  

Sex chromosomes in some reptiles share synteny with distantly related amniotes in regions orthologous to squamate chromosome 2. The latter finding suggests that chromosome 2 was formerly part of a larger ancestral (amniote) super-sex chromosome and raises questions about how sex chromosomes are formed and modified in reptiles. Australian dragon lizards (Agamidae) are emerging as an excellent model for studying these processes. In particular, they exhibit both genotypic (GSD) and temperature-dependent (TSD) sex determination, show evidence of transitions between the two modes and have evolved non-homologous ZW sex microchromosomes even within the same evolutionary lineage. They therefore represent an excellent group to probe further the idea of a shared ancestral super-sex chromosome and to investigate mechanisms for transition between different sex chromosome forms. Here, we compare sex chromosome homology among eight dragon lizard species from five genera to identify key cytological differences and the mechanisms that may be driving sex chromosome evolution in this group. We performed fluorescence in situ hybridisation to physically map bacterial artificial chromosome (BAC) clones from the bearded dragon, Pogona vitticeps’ ZW sex chromosomes and a nucleolar organising region (NOR) probe in males and females of eight Agamid species exhibiting either GSD or TSD. We show that the sex chromosome derived BAC clone hybridises near the telomere of chromosome 2q in all eight species examined. This clone also hybridises to the sex microchromosomes of three species (P vitticeps, P. barbata and Diporiphora nobbi) and a pair of microchromosomes in three others (Ctenophorus pictus, Amphibolurus norrisi and Amphibolurus muricatus). No other chromosomes are marked by the probe in two species from the closely related genus Physignathus. A probe bearing nucleolar organising region (NOR) sequences maps close to the telomere of chromosome 2q in all eight species, and to the ZW pair in P. vitticeps and P. barbata, the W microchromosome in D. nobbi, and several microchromosomes in P. cocincinus. Our findings provide evidence of sequence homology between chromosome 2 and the sex chromosomes of multiple agamids. These data support the hypothesis that there was an ancestral sex chromosome in amniotes that gave rise to squamate chromosome 2 and raises the prospect that some particular property of this chromosome has favoured its role as a sex chromosome in amniotes. It is likely that the amplification of repetitive sequences associated with this region has driven the high level of heterochromatinisation of the sex-specific chromosomes in three species of agamid. Our data suggest a possible mechanism for chromosome rearrangement, including inversion and duplication near the telomeric regions of the ancestral chromosome 2 and subsequent translocation to the ZW sex microchromosomes in three agamid species. It is plausible that these chromosome rearrangements involving sex chromosomes also drove speciation in this group.


2020 ◽  
Vol 12 (4) ◽  
pp. 243-258 ◽  
Author(s):  
Wen-Juan Ma ◽  
Fantin Carpentier ◽  
Tatiana Giraud ◽  
Michael E Hood

Abstract Degenerative mutations in non-recombining regions, such as in sex chromosomes, may lead to differential expression between alleles if mutations occur stochastically in one or the other allele. Reduced allelic expression due to degeneration has indeed been suggested to occur in various sex-chromosome systems. However, whether an association occurs between specific signatures of degeneration and differential expression between alleles has not been extensively tested, and sexual antagonism can also cause differential expression on sex chromosomes. The anther-smut fungus Microbotryum lychnidis-dioicae is ideal for testing associations between specific degenerative signatures and differential expression because 1) there are multiple evolutionary strata on the mating-type chromosomes, reflecting successive recombination suppression linked to mating-type loci; 2) separate haploid cultures of opposite mating types help identify differential expression between alleles; and 3) there is no sexual antagonism as a confounding factor accounting for differential expression. We found that differentially expressed genes were enriched in the four oldest evolutionary strata compared with other genomic compartments, and that, within compartments, several signatures of sequence degeneration were greater for differentially expressed than non-differentially expressed genes. Two particular degenerative signatures were significantly associated with lower expression levels within differentially expressed allele pairs: upstream insertion of transposable elements and mutations truncating the protein length. Other degenerative mutations associated with differential expression included nonsynonymous substitutions and altered intron or GC content. The association between differential expression and allele degeneration is relevant for a broad range of taxa where mating compatibility or sex is determined by genes located in large regions where recombination is suppressed.


2021 ◽  
pp. 1-9
Author(s):  
Chiao Kuwana ◽  
Hiroyuki Fujita ◽  
Masataka Tagami ◽  
Takanori Matsuo ◽  
Ikuo Miura

The sex chromosomes of most anuran amphibians are characterized by homomorphy in both sexes, and evolution to heteromorphy rarely occurs at the species or geographic population level. Here, we report sex chromosome heteromorphy in geographic populations of the Japanese Tago’s brown frog complex (2n = 26), comprising Rana sakuraii and R. tagoi. The sex chromosomes of R. sakuraii from the populations in western Japan were homomorphic in both sexes, whereas chromosome 7 from the populations in eastern Japan were heteromorphic in males. Chromosome 7 of R. tagoi, which is distributed close to R. sakuraii in eastern Japan, was highly similar in morphology to the Y chromosome of R. sakuraii. Based on this and on mitochondrial gene sequence analysis, we hypothesize that in the R. sakuraii populations from eastern Japan the XY heteromorphic sex chromosome system was established by the introduction of chromosome 7 from R. tagoi via interspecies hybridization. In contrast, chromosome 13 of R. tagoi from the 2 large islands in western Japan, Shikoku and Kyushu, showed a heteromorphic pattern of constitutive heterochromatin distribution in males, while this pattern was homomorphic in females. Our study reveals that sex chromosome heteromorphy evolved independently at the geographic lineage level in this species complex.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yisrael Rappaport ◽  
Hanna Achache ◽  
Roni Falk ◽  
Omer Murik ◽  
Oren Ram ◽  
...  

AbstractDuring meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes. In early meiocytes of mutant males and hermaphrodites, X segments are enriched with euchromatin assembly markers and active RNA polymerase II staining, indicating active transcription. Analysis of RNA-seq data showed that genes from the X chromosome are upregulated in gonads of mutant worms. Contrary to previous models, which predicted that any unsynapsed chromatin is silenced during meiosis, our data indicate that unsynapsed X segments are transcribed. Therefore, our results suggest that sex chromosome chromatin has a unique character that facilitates its meiotic expression when its continuity is lost, regardless of whether or not it is synapsed.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 483
Author(s):  
Wen-Juan Ma ◽  
Paris Veltsos

Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 661
Author(s):  
Ikuo Miura ◽  
Foyez Shams ◽  
Si-Min Lin ◽  
Marcelo de Bello Cioffi ◽  
Thomas Liehr ◽  
...  

Translocation between sex-chromosomes and autosomes generates multiple sex-chromosome systems. It happens unexpectedly, and therefore, the evolutionary meaning is not clear. The current study shows a multiple sex chromosome system comprising three different chromosome pairs in a Taiwanese brown frog (Odorrana swinhoana). The male-specific three translocations created a system of six sex-chromosomes, ♂X1Y1X2Y2X3Y3 -♀X1X1X2X2X3X3. It is unique in that the translocations occurred among three out of the six members of potential sex-determining chromosomes, which are known to be involved in sex-chromosome turnover in frogs, and the two out of three include orthologs of the sex-determining genes in mammals, birds and fishes. This rare case suggests sex-specific, nonrandom translocations and thus provides a new viewpoint for the evolutionary meaning of the multiple sex chromosome system.


Sign in / Sign up

Export Citation Format

Share Document