scholarly journals Research Progress of Gliomas in Machine Learning

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3169
Author(s):  
Ning Zhang ◽  
Yameng Wu ◽  
Yu Guo ◽  
Yu Sa ◽  
Qifeng Li ◽  
...  

In the field of gliomas research, the broad availability of genetic and image information originated by computer technologies and the booming of biomedical publications has led to the advent of the big-data era. Machine learning methods were applied as possible approaches to speed up the data mining processes. In this article, we reviewed the present situation and future orientations of machine learning application in gliomas within the context of workflows to integrate analysis for precision cancer care. Publicly available tools or algorithms for key machine learning technologies in the literature mining for glioma clinical research were reviewed and compared. Further, the existing solutions of machine learning methods and their limitations in glioma prediction and diagnostics, such as overfitting and class imbalanced, were critically analyzed.

2019 ◽  
Vol 20 (5) ◽  
pp. 540-550 ◽  
Author(s):  
Jiu-Xin Tan ◽  
Hao Lv ◽  
Fang Wang ◽  
Fu-Ying Dao ◽  
Wei Chen ◽  
...  

Enzymes are proteins that act as biological catalysts to speed up cellular biochemical processes. According to their main Enzyme Commission (EC) numbers, enzymes are divided into six categories: EC-1: oxidoreductase; EC-2: transferase; EC-3: hydrolase; EC-4: lyase; EC-5: isomerase and EC-6: synthetase. Different enzymes have different biological functions and acting objects. Therefore, knowing which family an enzyme belongs to can help infer its catalytic mechanism and provide information about the relevant biological function. With the large amount of protein sequences influxing into databanks in the post-genomics age, the annotation of the family for an enzyme is very important. Since the experimental methods are cost ineffective, bioinformatics tool will be a great help for accurately classifying the family of the enzymes. In this review, we summarized the application of machine learning methods in the prediction of enzyme family from different aspects. We hope that this review will provide insights and inspirations for the researches on enzyme family classification.


Kardiologiia ◽  
2020 ◽  
Vol 60 (10) ◽  
pp. 38-46
Author(s):  
B. I. Geltser ◽  
K. J. Shahgeldyan ◽  
V. Y. Rublev ◽  
V. N. Kotelnikov ◽  
A. B. Krieger ◽  
...  

Aim      To compare the accuracy of predicting an in-hospital fatal outcome for models based on current machine-learning technologies in patients with ischemic heart disease (IHD) after coronary bypass (CB) surgery.Material and methods  A retrospective analysis of 866 electronic medical records was performed for patients (685 men and 181 women) who have had a CB surgery for IHD in 2008–2018. Results of clinical, laboratory, and instrumental evaluations obtained prior to the CB surgery were analyzed. Patients were divided into two groups: group 1 included 35 (4 %) patients who died within the first 20 days of CB, and group 2 consisted of 831 (96 %) patients with a beneficial outcome of the surgery. Predictors of the in-hospital fatal outcome were identified by a multistep selection procedure with analysis of statistical hypotheses and calculation of weight coefficients. For construction of models and verification of predictors, machine-learning methods were used, including the multifactorial logistic regression (LR), random forest (RF), and artificial neural networks (ANN). Model accuracy was evaluated by three metrics: area under the ROC curve (AUC), sensitivity, and specificity. Cross validation of the models was performed on test samples, and the control validation was performed on a cohort of patients with IHD after CB, whose data were not used in development of the models.Results The following 7 risk factors for in-hospital fatal outcome with the greatest predictive potential were isolated from the EuroSCORE II scale: ejection fraction (EF) <30 %, EF 30-50 %, age of patients with recent MI, damage of peripheral arterial circulation, urgency of CB, functional class III-IV chronic heart failure, and 5 additional predictors, including heart rate, systolic blood pressure, presence of aortic stenosis, posterior left ventricular (LV) wall relative thickness index (RTI), and LV relative mass index (LVRMI). The models developed by the authors using LR, RF and ANN methods had higher AUC values and sensitivity compared to the classical EuroSCORE II scale. The ANN models including the RTI and LVRMI predictors demonstrated a maximum level of prognostic accuracy, which was illustrated by values of the quality metrics, AUC 93 %, sensitivity 90 %, and specificity 96 %. The predictive robustness of the models was confirmed by results of the control validation.Conclusion      The use of current machine-learning technologies allowed developing a novel algorithm for selection of predictors and highly accurate models for predicting an in-hospital fatal outcome after CB. 


2019 ◽  
Vol 25 (5) ◽  
pp. 716-742 ◽  
Author(s):  
Gang Kou ◽  
Xiangrui Chao ◽  
Yi Peng ◽  
Fawaz E. Alsaadi ◽  
Enrique Herrera-Viedma

Financial systemic risk is an important issue in economics and financial systems. Trying to detect and respond to systemic risk with growing amounts of data produced in financial markets and systems, a lot of researchers have increasingly employed machine learning methods. Machine learning methods study the mechanisms of outbreak and contagion of systemic risk in the financial network and improve the current regulation of the financial market and industry. In this paper, we survey existing researches and methodologies on assessment and measurement of financial systemic risk combined with machine learning technologies, including big data analysis, network analysis and sentiment analysis, etc. In addition, we identify future challenges, and suggest further research topics. The main purpose of this paper is to introduce current researches on financial systemic risk with machine learning methods and to propose directions for future work.


2020 ◽  
Vol 21 (12) ◽  
pp. 1229-1241 ◽  
Author(s):  
Meng-Lu Liu ◽  
Wei Su ◽  
Zheng-Xing Guan ◽  
Dan Zhang ◽  
Wei Chen ◽  
...  

: The chloroplast is a type of subcellular organelle of green plants and eukaryotic algae, which plays an important role in the photosynthesis process. Since the function of a protein correlates with its location, knowing its subchloroplast localization is helpful for elucidating its functions. However, due to a large number of chloroplast proteins, it is costly and time-consuming to design biological experiments to recognize subchloroplast localizations of these proteins. To address this problem, during the past ten years, twelve computational prediction methods have been developed to predict protein subchloroplast localization. This review summarizes the research progress in this area. We hope the review could provide important guide for further computational study on protein subchloroplast localization.


Sign in / Sign up

Export Citation Format

Share Document