scholarly journals Signaling through the S1P−S1PR Axis in the Gut, the Immune and the Central Nervous System in Multiple Sclerosis: Implication for Pathogenesis and Treatment

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3217
Author(s):  
Simela Chatzikonstantinou ◽  
Vasiliki Poulidou ◽  
Marianthi Arnaoutoglou ◽  
Dimitrios Kazis ◽  
Ioannis Heliopoulos ◽  
...  

Sphingosine 1-phosphate (S1P) is a signaling molecule with complex biological functions that are exerted through the activation of sphingosine 1-phosphate receptors 1–5 (S1PR1–5). S1PR expression is necessary for cell proliferation, angiogenesis, neurogenesis and, importantly, for the egress of lymphocytes from secondary lymphoid organs. Since the inflammatory process is a key element of immune-mediated diseases, including multiple sclerosis (MS), S1PR modulators are currently used to ameliorate systemic immune responses. The ubiquitous expression of S1PRs by immune, intestinal and neural cells has significant implications for the regulation of the gut–brain axis. The dysfunction of this bidirectional communication system may be a significant factor contributing to MS pathogenesis, since an impaired intestinal barrier could lead to interaction between immune cells and microbiota with a potential to initiate abnormal local and systemic immune responses towards the central nervous system (CNS). It appears that the secondary mechanisms of S1PR modulators affecting the gut immune system, the intestinal barrier and directly the CNS, are coordinated to promote therapeutic effects. The scope of this review is to focus on S1P−S1PR functions in the cells of the CNS, the gut and the immune system with particular emphasis on the immunologic effects of S1PR modulation and its implication in MS.

2012 ◽  
Vol 18 (3) ◽  
pp. 258-263 ◽  
Author(s):  
M Kipp ◽  
S Amor

FTY720 (fingolimod; Gilenya®), a sphingosine 1-phosphate (S1P) receptor modulator, is the first oral disease-modifying therapy to be approved for the treatment of relapsing–remitting multiple sclerosis. FTY720 is rapidly converted in vivo to the active S-fingolimod-phosphate, which binds to S1P receptors. This action inhibits egress of lymphocytes from the lymph nodes, preventing entry into the blood and thus infiltration into the central nervous system. More recent studies, however, convincingly show that FTY720 crosses the blood–brain barrier, where it is thought to act on S1P receptors on cells within the central nervous system, such as astrocytes, oligodendrocytes or microglia. Here we discuss the evidence showing that FTY720 also plays a role in remyelination and repair within the brain. While the mechanisms of action still require firm elucidation, it is clear that FTY720 could also be reparative, extending its therapeutic potential for multiple sclerosis.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1771 ◽  
Author(s):  
Markus Kipp

The modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes in lymph nodes. Different sphingosine 1-phosphate receptor subtypes are expressed in the brain and spinal cord, and their pharmacological effects may improve disease development and neuropathology. Siponimod (BAF312) is a novel sphingosine 1-phosphate receptor modulator that has recently been approved for the treatment of active secondary progressive multiple sclerosis (MS). In this review article, we summarize recent evidence suggesting that the active role of siponimod in patients with progressive MS may be due to direct interaction with central nervous system cells. Additionally, we tried to summarize our current understanding of the function of siponimod and discuss the effects observed in the case of MS.


2013 ◽  
Vol 19 (9) ◽  
pp. 1230-1233 ◽  
Author(s):  
Akiko Yokoseki ◽  
Etsuji Saji ◽  
Musashi Arakawa ◽  
Mariko Hokari ◽  
Takanobu Ishiguro ◽  
...  

Fingolimod acts as a functional antagonist of the sphingosine-1-phosphate receptor, and it traps lymphocytes in secondary lymphoid organs and precludes their migration into the central nervous system. We report the case of a patient who suffered a relatively severe relapse of multiple sclerosis (MS) during the initial 3 months of fingolimod therapy, with retention of CCR7 expression on CD4+ T cells in the cerebrospinal fluid (CSF) despite decreased numbers of lymphocytes and decreased expression of CCR7 on CD4+ T cells in the blood. These data suggest that fingolimod may cause differential effects on the CSF and blood lymphocytes of patients with MS during the initial months of therapy.


2017 ◽  
Vol 16 (03) ◽  
pp. 164-170
Author(s):  
Rachel Gottlieb-Smith ◽  
Amy Waldman

AbstractAcquired demyelinating syndromes (ADS) present with acute or subacute monofocal or polyfocal neurologic deficits localizing to the central nervous system. The clinical features of distinct ADS have been carefully characterized including optic neuritis, transverse myelitis, and acute disseminated encephalomyelitis. These disorders may all be monophasic disorders. Alternatively, optic neuritis, partial transverse myelitis, and acute disseminated encephalomyelitis may be first presentations of a relapsing or polyphasic neuroinflammatory disorder, such as multiple sclerosis or neuromyelitis optica. The clinical features of these disorders and the differential diagnosis are discussed in this article.


Sign in / Sign up

Export Citation Format

Share Document