scholarly journals Homeostatic Regulation of Glucocorticoid Receptor Activity by Hypoxia-Inducible Factor 1: From Physiology to Clinic

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3441
Author(s):  
Davide Marchi ◽  
Fredericus J. M. van Eeden

Glucocorticoids (GCs) represent a well-known class of lipophilic steroid hormones biosynthesised, with a circadian rhythm, by the adrenal glands in humans and by the inter-renal tissue in teleost fish (e.g., zebrafish). GCs play a key role in the regulation of numerous physiological processes, including inflammation, glucose, lipid, protein metabolism and stress response. This is achieved through binding to their cognate receptor, GR, which functions as a ligand-activated transcription factor. Due to their potent anti-inflammatory and immune-suppressive action, synthetic GCs are broadly used for treating pathological disorders that are very often linked to hypoxia (e.g., rheumatoid arthritis, inflammatory, allergic, infectious, and autoimmune diseases, among others) as well as to prevent graft rejections and against immune system malignancies. However, due to the presence of adverse effects and GC resistance their therapeutic benefits are limited in patients chronically treated with steroids. For this reason, understanding how to fine-tune GR activity is crucial in the search for novel therapeutic strategies aimed at reducing GC-related side effects and effectively restoring homeostasis. Recent research has uncovered novel mechanisms that inhibit GR function, thereby causing glucocorticoid resistance, and has produced some surprising new findings. In this review we analyse these mechanisms and focus on the crosstalk between GR and HIF signalling. Indeed, its comprehension may provide new routes to develop novel therapeutic targets for effectively treating immune and inflammatory response and to simultaneously facilitate the development of innovative GCs with a better benefits-risk ratio.

2021 ◽  
Author(s):  
Chloe-Anne Martinez ◽  
Neha Bal ◽  
Peter A Cistulli ◽  
Kristina M Cook

Cellular oxygen-sensing pathways are primarily regulated by hypoxia inducible factor-1 (HIF-1) in chronic hypoxia and are well studied. Intermittent hypoxia also occurs in many pathological conditions, yet little is known about its biological effects. In this study, we investigated how two proposed cellular oxygen sensing systems, HIF-1 and KDM4A-C, respond to cells exposed to intermittent hypoxia and compared to chronic hypoxia. We found that intermittent hypoxia increases HIF-1 activity through a pathway distinct from chronic hypoxia, involving the KDM4A, -B and -C histone lysine demethylases. Intermittent hypoxia increases the quantity and activity of KDM4A-C resulting in a decrease in H3K9 methylation. This contrasts with chronic hypoxia, which decreases KDM4A-C activity, leading to hypermethylation of H3K9. Demethylation of histones bound to the HIF1A gene in intermittent hypoxia increases HIF1A mRNA expression, which has the downstream effect of increasing overall HIF-1 activity and expression of HIF target genes. This study highlights how multiple oxygen-sensing pathways can interact to regulate and fine tune the cellular hypoxic response depending on the period and length of hypoxia.


2007 ◽  
Vol 43 ◽  
pp. 105-120 ◽  
Author(s):  
Michael L. Paffett ◽  
Benjimen R. Walker

Several molecular and cellular adaptive mechanisms to hypoxia exist within the vasculature. Many of these processes involve oxygen sensing which is transduced into mediators of vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation. A variety of oxygen-responsive pathways, such as HIF (hypoxia-inducible factor)-1 and HOs (haem oxygenases), contribute to the overall adaptive process during hypoxia and are currently an area of intense research. Generation of ROS (reactive oxygen species) may also differentially regulate vascular tone in these circulations. Potential candidates underlying the divergent responses between the systemic and pulmonary circulations may include Nox (NADPH oxidase)-derived ROS and mitochondrial-derived ROS. In addition to alterations in ROS production governing vascular tone in the hypoxic setting, other vascular adaptations are likely to be involved. HPV (hypoxic pulmonary vasoconstriction) and CH (chronic hypoxia)-induced alterations in cellular proliferation, ionic conductances and changes in the contractile apparatus sensitivity to calcium, all occur as adaptive processes within the vasculature.


2020 ◽  
Author(s):  
Lungwani Muungo

Tumor hypoxia and hypoxia-inducible factor 1 (HIF-1) activationare associated with cancer progression. Here, we demonstrate thatthe transcription factor TAp73 opposes HIF-1 activity through anontranscriptional mechanism, thus affecting tumor angiogenesis.TAp73-deficient mice have an increased incidence of spontaneousand chemically induced tumors that also display enhanced vascularization.Mechanistically, TAp73 interacts with the regulatory subunit(α) of HIF-1 and recruits mouse double minute 2 homolog intothe protein complex, thus promoting HIF-1α polyubiquitination andconsequent proteasomal degradation in an oxygen-independentmanner. In human lung cancer datasets, TAp73 strongly predictsgood patient prognosis, and its expression is associated with lowHIF-1 activation and angiogenesis. Our findings, supported by invivo and clinical evidence, demonstrate a mechanism for oxygenindependentHIF-1 regulation, which has important implicationsfor individualizing therapies in patients with cancer.


Sign in / Sign up

Export Citation Format

Share Document