scholarly journals Elastic Laminar Reorganization Occurs with Outward Diameter Oxidase for Stabilization

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Ryan M. McEnaney ◽  
Dylan D. McCreary ◽  
Nolan O. Skirtich ◽  
Elizabeth A. Andraska ◽  
Ulka Sachdev ◽  
...  

When a large artery becomes occluded, hemodynamic changes stimulate remodeling of arterial networks to form collateral arteries in a process termed arteriogenesis. However, the structural changes necessary for collateral remodeling have not been defined. We hypothesize that deconstruction of the extracellular matrix is essential to remodel smaller arteries into effective collaterals. Using multiphoton microscopy, we analyzed collagen and elastin structure in maturing collateral arteries isolated from ischemic rat hindlimbs. Collateral arteries harvested at different timepoints showed progressive diameter expansion associated with striking rearrangement of internal elastic lamina (IEL) into a loose fibrous mesh, a pattern persisting at 8 weeks. Despite a 2.5-fold increase in luminal diameter, total elastin content remained unchanged in collaterals compared with control arteries. Among the collateral midzones, baseline elastic fiber content was low. Outward remodeling of these vessels with a 10–20 fold diameter increase was associated with fractures of the elastic fibers and evidence of increased wall tension, as demonstrated by the straightening of the adventitial collagen. Inhibition of lysyl oxidase (LOX) function with β-aminopropionitrile resulted in severe fragmentation or complete loss of continuity of the IEL in developing collaterals. Collateral artery development is associated with permanent redistribution of existing elastic fibers to accommodate diameter growth. We found no evidence of new elastic fiber formation. Stabilization of the arterial wall during outward remodeling is necessary and dependent on LOX activity.

Author(s):  
Ryan M McEnaney ◽  
Dylan D McCreary ◽  
Nolan Skirtich ◽  
Elizabeth Andraska ◽  
Ulka Sachdev ◽  
...  

When a large artery becomes occluded, hemodynamic changes stimulate remodeling of arterial networks to form collateral arteries in a process termed arteriogenesis. However, the structural changes necessary for collateral remodeling have not been defined. We hypothesize that decon-struction of the extracellular matrix is essential to the remodeling of smaller arteries into effective collaterals. Using multiphoton microscopy, we analyzed collagen and elastin structure in maturing collateral arteries isolated from ischemic rat hindlimbs. Collateral arteries harvested at different timepoints showed progressive diameter expansion associated with striking rearrangement of in-ternal elastic lamina (IEL) into a loose fibrous mesh, a pattern persisting at 8 weeks. Despite a 2.5-fold increase in luminal diameter, total elastin content remained unchanged in collaterals compared with control arteries. Among the collateral midzones, baseline elastic fiber content is low. Outward remodeling of these vessels with a 10-20 fold diameter increase was associated with fractures of the elastic fibers and evidence of increased wall tension as demonstrated by straight-ening of the adventitial collagen. Inhibition of lysyl oxidase (LOX) function with β-aminopropionitrile resulted in severe fragmentation or complete loss of continuity of the IEL in developing collaterals. Collateral artery development is associated with permanent redistribution of existing elastic fibers to accommodate diameter growth. We found no evidence of new elastic fiber formation. Stabilization of the arterial wall during outward remodeling is necessary and dependent on LOX activity.


Author(s):  
Leslie Baumann ◽  
Eric F Bernstein ◽  
Anthony S Weiss ◽  
Damien Bates ◽  
Shannon Humphrey ◽  
...  

Abstract Elastin is the main component of elastic fibers, which provide stretch, recoil, and elasticity to the skin. Normal levels of elastic fiber production, organization, and integration with other cutaneous extracellular matrix proteins, proteoglycans, and glycosaminoglycans are integral to maintaining healthy skin structure, function, and youthful appearance. Although elastin has very low turnover, its production decreases after individuals reach maturity and it is susceptible to damage from many factors. With advancing age and exposure to environmental insults, elastic fibers degrade. This degradation contributes to the loss of the skin’s structural integrity; combined with subcutaneous fat loss, this results in looser, sagging skin, causing undesirable changes in appearance. The most dramatic changes occur in chronically sun-exposed skin, which displays sharply altered amounts and arrangements of cutaneous elastic fibers, decreased fine elastic fibers in the superficial dermis connecting to the epidermis, and replacement of the normal collagen-rich superficial dermis with abnormal clumps of solar elastosis material. Disruption of elastic fiber networks also leads to undesirable characteristics in wound healing, and the worsening structure and appearance of scars and stretch marks. Identifying ways to replenish elastin and elastic fibers should improve the skin’s appearance, texture, resiliency, and wound-healing capabilities. However, few therapies are capable of repairing elastic fibers or substantially reorganizing the elastin/microfibril network. This review describes the clinical relevance of elastin in the context of the structure and function of healthy and aging skin, wound healing, and scars and introduces new approaches being developed to target elastin production and elastic fiber formation.


2006 ◽  
Vol 291 (2) ◽  
pp. H804-H812 ◽  
Author(s):  
José M. González ◽  
Ana M. Briones ◽  
Beatriz Somoza ◽  
Craig J. Daly ◽  
Elisabet Vila ◽  
...  

Resistance artery narrowing and stiffening are key elements in the pathogenesis of essential hypertension, but their origin is not completely understood. In mesenteric resistance arteries (MRA) from spontaneously hypertensive rats (SHR), we have shown that inward remodeling is associated with abnormal elastic fiber organization, leading to smaller fenestrae in the internal elastic lamina. Our current aim is to determine whether this alteration is an early event that precedes vessel narrowing, or if elastic fiber reorganization in SHR arteries occurs because of the remodeling process itself. Using MRA from 10-day-old, 30-day-old, and 6-mo-old SHR and normotensive Wistar Kyoto rats, we investigated the time course of the development of structural and mechanical alterations (pressure myography), elastic fiber organization (confocal microscopy), and amount of elastin (radioimmunoassay for desmosine) and collagen (picrosirius red). SHR MRA had an impairment of fenestrae enlargement during the first month of life. In 30-day-old SHR, smaller fenestrae and more packed elastic fibers in the internal elastic lamina were paralleled by increased wall stiffness. Collagen and elastin levels were unaltered at this age. MRA from 6-mo-old SHR also had smaller fenestrae and a denser network of adventitial elastic fibers, accompanied by increased collagen content and vessel narrowing. At this age, elastase digestion was less effective in SHR MRA, suggesting a lower susceptibility of elastic fibers to enzymatic degradation. These data suggest that abnormal elastic fiber deposition in SHR increases resistance artery stiffness at an early age, which might participate in vessel narrowing later in life.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Maria Gabriela Espinosa ◽  
Marius Catalin Staiculescu ◽  
Jungsil Kim ◽  
Eric Marin ◽  
Jessica E. Wagenseil

Development of a closed circulatory system requires that large arteries adapt to the mechanical demands of high, pulsatile pressure. Elastin and collagen uniquely address these design criteria in the low and high stress regimes, resulting in a nonlinear mechanical response. Elastin is the core component of elastic fibers, which provide the artery wall with energy storage and recoil. The integrity of the elastic fiber network is affected by component insufficiency or disorganization, leading to an array of vascular pathologies and compromised mechanical behavior. In this review, we discuss how elastic fibers are formed and how they adapt in development and disease. We discuss elastic fiber contributions to arterial mechanical behavior and remodeling. We primarily present data from mouse models with elastic fiber deficiencies, but suggest that alternate small animal models may have unique experimental advantages and the potential to provide new insights. Advanced ultrastructural and biomechanical data are constantly being used to update computational models of arterial mechanics. We discuss the progression from early phenomenological models to microstructurally motivated strain energy functions for both collagen and elastic fiber networks. Although many current models individually account for arterial adaptation, complex geometries, and fluid–solid interactions (FSIs), future models will need to include an even greater number of factors and interactions in the complex system. Among these factors, we identify the need to revisit the role of time dependence and axial growth and remodeling in large artery mechanics, especially in cardiovascular diseases that affect the mechanical integrity of the elastic fibers.


2022 ◽  
Vol 8 ◽  
Author(s):  
Elizabeth Andraska ◽  
Nolan Skirtich ◽  
Dylan McCreary ◽  
Rohan Kulkarni ◽  
Edith Tzeng ◽  
...  

Background: During arteriogenesis, outward remodeling of the arterial wall expands luminal diameter to produce increased conductance in developing collaterals. We have previously shown that diameter expansion without loss of internal elastic lamina (IEL) integrity requires both degradation of elastic fibers and LOX-mediated repair. The aim of this study was to investigate the expression of genes involved in remodeling of the extracellular matrix (ECM) using a model of arteriogenesis.Methods: Sprague-Dawley rats underwent femoral artery ligation with distal arteriovenous fistula (FAL + AVF) placement. Profunda femoral arteries (PFA) were harvested for analysis at various time points. Serum desmosine, an amino acid found exclusively in elastin, was evaluated with enzyme-linked immunosorbent assay (ELISA) as a marker of tissue elastolysis. Tissue mRNA isolated from FAL + AVF exposed PFAs was compared to the contralateral sham-operated using qPCR. HCAECs were cultured under low shear stress (8 dyn·s/cm2) for 24 h and then exposed to high shear stress (40 dyn·s/cm2) for 2–6 h. Primers used included FBN-1, FBN-2, Timp-2, LOX-1, Trop-E, Cath-K, Cath-S, MMP-2, MMP-9, FBLN-4, and FBLN-5 and were normalized to GAPDH. mRNA fold changes were quantified using the 2-ΔΔCq method. Comparisons between time points were made with non-parametric ANOVA analysis with Bonferroni adjustment.Results: PFAs showed IEL reorganization during arteriogenesis. Serum desmosine levels are significantly elevated at 2 days and one week, with a return to baseline thereafter (p < 0.01). Expression of ECM structural proteins (FBN-1, FBN-2, FBLN-4, FBLN-5, Tropoelastin, TIMP-2, LOX-1) and elastolytic proteins (MMP-2, MMP-9, Cathepsin S, Cathepsin K) exhibited an early peak (p < 0.05) relative to sham PFAs. After two weeks, expression returned to baseline. HCAECs demonstrated upregulation of FBN-2, FBLN-5, LOX-1 and Trop-E at 4 h of high shear stress, as well as elastolytic protein MMP-2.Conclusions: Elastin degradation begins early in arteriogenesis and is mediated by local upregulation of elastolytic genes. Elastolysis appears to be simultaneously balanced by production of elastic fiber components which may facilitate stabilization of the IEL. Endothelial cells are central to initiation of arteriogenesis and begin ECM remodeling in response to altered shear stress.


Author(s):  
Victoria Le ◽  
Hiromi Yanagisawa ◽  
Jessica Wagenseil

Fibulin-5 is an extracellular matrix protein that interacts with other proteins during a complex process that results in elastic fiber formation from the elastin precursor, tropoelastin [1]. Elastic fibers are an important component of tissues requiring elasticity, including large arteries, lungs and skin. In mice lacking fibulin-5 ( Fbln5−/−), these tissues contain disorganized elastic fibers and exhibit decreased elasticity [2]. The phenotype of Fbln5−/− mice is similar to that of humans with cutis laxa, a connective tissue disorder characterized by loose skin and narrow arteries with reduced compliance.


2019 ◽  
Vol 63 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Seung Jae Shin ◽  
Hiromi Yanagisawa

Abstract Elastic fibers confer elasticity and recoiling to tissues and organs and play an essential role in induction of biochemical responses in a cell against mechanical forces derived from the microenvironment. The core component of elastic fibers is elastin (ELN), which is secreted as the monomer tropoelastin from elastogenic cells, and undergoes self-aggregation, cross-linking and deposition on to microfibrils, and assemble into insoluble ELN polymers. For elastic fibers to form, a microfibril scaffold (primarily formed by fibrillin-1 (FBN1)) is required. Numerous elastic fiber-associated proteins are involved in each step of elastogenesis and they instruct and/or facilitate the elastogenesis processes. In this review, we designated five proteins as key molecules in elastic fiber formation, including ELN, FBN1, fibulin-4 (FBLN4), fibulin-5 (FBLN5), and latent TGFβ-binding protein-4 (LTBP4). ELN and FBN1 serve as building blocks for elastic fibers. FBLN5, FBLN4 and LTBP4 have been demonstrated to play crucial roles in elastogenesis through knockout studies in mice. Using these molecules as a platform and expanding the elastic fiber network through the generation of an interactome map, we provide a concise review of elastogenesis with a recent update as well as discuss various biological functions of elastic fiber-associated proteins beyond elastogenesis in vivo.


Author(s):  
C. R. Basom

The tunica media of the developing chick aorta was examined for elastic fiber formation. Embryos of three to eighteen days incubation age were prepared for electron microscopy by Karnovsky's fixation. Small embryos were fixed by “in toto” immersion: medium sized embryos were previously transected. The aortae of larger embryos were removed prior to fixation. Epon 812 was used for embedment.Irregular masses of amorphous ground substance appeared in the interstitial space of the aortae in three to five day embryos. These masses were located where elastic fibers would later form (Fig. 1). Later loose tangles of microfibrils appeared within the same masses (Fig. 2). In still older embryos, individual unit collagen fibrils appeared within this loose network. At one week's incubation, small elastic fibers could be identified by their homogeneous matrix. These arose within the conglomerate masses described above. At the beginning of the third week compact bundles of colinear unit collagen fibrils appeared (Fig. 3). These fibrils swelled, gradually lost their periodicity and became very lucid (Fig. 4).


2011 ◽  
Vol 43 (9) ◽  
pp. 499-505 ◽  
Author(s):  
Lisa A. Joss-Moore ◽  
Yan Wang ◽  
Xing Yu ◽  
Michael S. Campbell ◽  
Christopher W. Callaway ◽  
...  

Complications of intrauterine growth restriction (IUGR) include increased pulmonary morbidities and impaired alveolar development. Normal alveolar development depends upon elastin expression and processing, as well as the formation and deposition of elastic fibers. This is true of the human and rat. In this study, we hypothesized that uteroplacental insufficiency (UPI)-induced IUGR decreases mRNA levels of elastin and genes required for elastin fiber synthesis and assembly, at birth (prealveolarization) and postnatal day 7 (midalveolarization) in the rat. We further hypothesized that this would be accompanied by reduced elastic fiber deposition and increased static compliance at postnatal day 21 (mature lung). We used a well characterized rat model of IUGR to test these hypotheses. IUGR decreases mRNA transcript levels of genes essential for elastic fiber formation, including elastin, at birth and day 7. In the day 21 lung, IUGR decreases elastic fiber deposition and increases static lung compliance. We conclude that IUGR decreases mRNA transcript levels of elastic fiber synthesis genes, before and during alveolarization leading to a reduced elastic fiber density and increased static lung compliance in the mature lung. We speculate that the mechanism by which IUGR predisposes to pulmonary disease may be via decreased lung elastic fiber deposition.


2007 ◽  
Vol 28 (3) ◽  
pp. 1061-1067 ◽  
Author(s):  
Francois-Xavier Sicot ◽  
Takeshi Tsuda ◽  
Dessislava Markova ◽  
John F. Klement ◽  
Machiko Arita ◽  
...  

ABSTRACT Fibulin-2 is an extracellular matrix protein belonging to the five-member fibulin family, of which two members have been shown to play essential roles in elastic fiber formation during development. Fibulin-2 interacts with two major constituents of elastic fibers, tropoelastin and fibrillin-1, in vitro and localizes to elastic fibers in many tissues in vivo. The protein is prominently expressed during morphogenesis of the heart and aortic arch vessels and at early stages of cartilage development. To examine its role in vivo, we generated mice that do not express the fibulin-2 gene (Fbln2) through homologous recombination of embryonic stem cells. Unexpectedly, the fibulin-2-null mice were viable and fertile and did not display gross and anatomical abnormalities. Histological and ultrastructural analyses revealed that elastic fibers assembled normally in the absence of fibulin-2. No compensatory up-regulation of mRNAs for other fibulin members was detected in the aorta and skin tissue. However, in the fibulin-2 null aortae, fibulin-1 immunostaining was increased in the inner elastic lamina, where fibulin-2 preferentially localizes. The results demonstrate that fibulin-2 is not required for mouse development and elastic fiber formation and suggest possible functional redundancy between fibulin-1 and fibulin-2.


Sign in / Sign up

Export Citation Format

Share Document