scholarly journals FZD10 Carried by Exosomes Sustains Cancer Cell Proliferation

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 777 ◽  
Author(s):  
Scavo ◽  
Depalo ◽  
Rizzi ◽  
Ingrosso ◽  
Fanizza ◽  
...  

Extracellular vesicles (EVs) are involved in intercellular communication during carcinogenesis, and cancer cells are able to secrete EVs, in particular exosomes containing molecules, that can be transferred to recipient cells to induce pathological processes and significant modifications, as metastasis, increase of proliferation, and carcinogenesis evolution. FZD proteins, a family of receptors comprised in the Wnt signaling pathway, play an important role in carcinogenesis of the gastroenteric tract. Here, a still unknown role of Frizzled 10 (FZD10) protein was identified. In particular, the presence of FZD10 and FZD10-mRNA in exosomes extracted from culture medium of the untreated colorectal, gastric, hepatic, and cholangio cancer cell lines, was detected. A substantial reduction in the FZD10 and FZD10-mRNA level was achieved in FZD10-mRNA silenced cells and in their corresponding exosomes. Concomitantly, a significant decrease in viability of the silenced cells compared to their respective controls was observed. Notably, the incubation of silenced cells with the exosomes extracted from culture medium of the same untreated cells promoted the restoration of the cell viability and, also, of the FZD10 and FZD10-mRNA level, thus indicating that the FZD10 and FZD10-mRNA delivering exosomes may be potential messengers of cancer reactivation and play an active role in long-distance metastatization.

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3530
Author(s):  
Jessica Gambardella ◽  
Antonella Fiordelisi ◽  
Gaetano Santulli ◽  
Michele Ciccarelli ◽  
Federica Andrea Cerasuolo ◽  
...  

The involvement of GRK2 in cancer cell proliferation and its counter-regulation of p53 have been suggested in breast cancer even if the underlying mechanism has not yet been elucidated. Furthermore, the possibility to pharmacologically inhibit GRK2 to delay cancer cell proliferation has never been explored. We investigated this possibility by setting up a study that combined in vitro and in vivo models to underpin the crosstalk between GRK2 and p53. To reach this aim, we took advantage of the different expression of p53 in cell lines of thyroid cancer (BHT 101 expressing p53 and FRO cells, which are p53-null) in which we overexpressed or silenced GRK2. The pharmacological inhibition of GRK2 was achieved using the specific inhibitor KRX-C7. The in vivo study was performed in Balb/c nude mice, where we treated BHT-101 or FRO-derived tumors with KRX-C7. In our in vitro model, FRO cells were unaffected by GRK2 expression levels, whereas BHT-101 cells were sensitive, thus suggesting a role for p53. The regulation of p53 by GRK2 is due to phosphorylative events in Thr-55, which induce the degradation of p53. In BHT-101 cells, the pharmacologic inhibition of GRK2 by KRX-C7 increased p53 levels and activated apoptosis through the mitochondrial release of cytochrome c. These KRX-C7-mediated events were also confirmed in cancer allograft models in nude mice. In conclusion, our data showed that GRK2 counter-regulates p53 expression in cancer cells through a kinase-dependent activity. Our results further corroborate the anti-proliferative role of GRK2 inhibitors in p53-sensitive tumors and propose GRK2 as a therapeutic target in selected cancers.


2010 ◽  
Vol 89 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Caihua Zhu ◽  
Qin Chen ◽  
Zuoquan Xie ◽  
Jing Ai ◽  
Linjiang Tong ◽  
...  

2016 ◽  
Vol 8 (28) ◽  
pp. 5596-5603 ◽  
Author(s):  
Jaeah Kim ◽  
Christopher P. Hopper ◽  
Kelsey H. Connell ◽  
Parisa Darkhal ◽  
Jason A. Zastre ◽  
...  

Quantification of benfotiamine and sulbutiamine, synthetic thiamine analogs, in biological samples is an essential step toward understanding the role of these thiamine analogs on cancer cell proliferation.


2012 ◽  
Vol 179 (2) ◽  
pp. 151 ◽  
Author(s):  
Daisuke Iizuka ◽  
Tatsuhiko Imaoka ◽  
Mayumi Nishimura ◽  
Hidehiko Kawai ◽  
Fumio Suzuki ◽  
...  

2018 ◽  
Vol 154 (6) ◽  
pp. S-650
Author(s):  
Eiji Kubota ◽  
Takashi Yagi ◽  
Hiromi Kataoka ◽  
Takashi Joh

2014 ◽  
Vol 5 ◽  
Author(s):  
Bose Ujjal ◽  
Rauch Cyril ◽  
Allegrucci Cinzia ◽  
Tufarelli Cristina ◽  
Khan Raheela

2020 ◽  
Author(s):  
Wei Wang ◽  
Meng Chen ◽  
Hailing Xu ◽  
Dongqing Lv ◽  
Suna Zhou ◽  
...  

Abstract Background: USP46 has been shown to function as tumor suppressor in colon cancer and renal cell carcinoma. However, its specific role in other cancers remains unknown. This study was aimed to investigate the role of USP46 in lung cancer tumorigenesis, and to identify the underlying mechanism. Methods: Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) and Western Blotting (WB) were used to measure the expression levels of USP46 and PHLPP1 in lung cancer tissue and adjacent normal tissue from lung cancer patients. The functional role of USP46 in regulating proliferation in lung cancer cells were examined by cell proliferation assay, radiation assay, genetic overexpression and knock down and chemical inhibition of relevant genes. The underlying mechanisms were investigated in multiple lung cancer cell line models by co-immunoprecipitation and ubiquitination assays. Results: This study identified strong downregulation of USP46 and PHLPP1 expression in lung cancer tissues relative to normal adjacent tissues. USP46 was further shown to inhibit lung cancer cell proliferation under normal growth conditions and during radiation induced DNA damage by antagonizing the ubiquitination of PHLPP1 resulting in the inhibition of AKT signaling. The effect of USP46 knock down on lung cancer cell proliferation was significantly reversed by exposure to radiation and AKT inhibition. Conclusions: USP46 is down-regulated in lung cancer, and it suppresses proliferation of lung cancer cells by inhibiting PHLPP1/AKT pathway. AKT inhibition slows proliferation of USP46 down-regulated lung cancer cells exposed to radiation suggesting a potential therapeutic avenue for USP46 down-regulated lung cancer through a combination of radiation and AKT inhibitor treatment.


Sign in / Sign up

Export Citation Format

Share Document