proliferation regulation
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zeenia Kaul ◽  
Caroline T. Y. Cheung ◽  
Priyanshu Bhargava ◽  
Anissa Notifa Sari ◽  
Yue Yu ◽  
...  

AbstractActivation of a telomere length maintenance mechanism (TMM), including telomerase and alternative lengthening of telomeres (ALT), is essential for replicative immortality of tumor cells, although its regulatory mechanisms are incompletely understood. We conducted a microRNA (miRNA) microarray analysis on isogenic telomerase positive (TEP) and ALT cancer cell lines. Amongst nine miRNAs that showed difference in their expression in TEP and ALT cancer cells in array analysis, miR-708 was selected for further analysis since it was consistently highly expressed in a large panel of ALT cells. miR-708 in TEP and ALT cancer cells was not correlated with C-circle levels, an established feature of ALT cells. Its overexpression induced suppression of cell migration, invasion, and angiogenesis in both TEP and ALT cells, although cell proliferation was inhibited only in TEP cells suggesting that ALT cells may have acquired the ability to escape inhibition of cell proliferation by sustained miR-708 overexpression. Further, cell proliferation regulation in TEP cells by miR708 appears to be through the CARF-p53 pathway. We demonstrate here that miR-708 (i) is the first miRNA shown to be differentially regulated in TEP and ALT cancer cells, (ii) possesses tumor suppressor function, and (iii) deregulates CARF and p21WAF1-mediated signaling to limit proliferation in TEP cells.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 332
Author(s):  
Valentina Brillo ◽  
Leonardo Chieregato ◽  
Luigi Leanza ◽  
Silvia Muccioli ◽  
Roberto Costa

Mitochondria are key intracellular organelles involved not only in the metabolic state of the cell, but also in several cellular functions, such as proliferation, Calcium signaling, and lipid trafficking. Indeed, these organelles are characterized by continuous events of fission and fusion which contribute to the dynamic plasticity of their network, also strongly influenced by mitochondrial contacts with other subcellular organelles. Nevertheless, mitochondria release a major amount of reactive oxygen species (ROS) inside eukaryotic cells, which are reported to mediate a plethora of both physiological and pathological cellular functions, such as growth and proliferation, regulation of autophagy, apoptosis, and metastasis. Therefore, targeting mitochondrial ROS could be a promising strategy to overcome and hinder the development of diseases such as cancer, where malignant cells, possessing a higher amount of ROS with respect to healthy ones, could be specifically targeted by therapeutic treatments. In this review, we collected the ultimate findings on the blended interplay among mitochondrial shaping, mitochondrial ROS, and several signaling pathways, in order to contribute to the dissection of intracellular molecular mechanisms involved in the pathophysiology of eukaryotic cells, possibly improving future therapeutic approaches.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhengwei Yan ◽  
Minzhang Cheng ◽  
Guohui Hu ◽  
Yao Wang ◽  
Shaopeng Zeng ◽  
...  

AbstractHedgehog (Hh) signaling plays a critical role in embryogenesis and tissue homeostasis, and its deregulation has been associated with tumor growth. The tumor suppressor SuFu inhibits Hh signaling by preventing the nuclear translocation of Gli and suppressing cell proliferation. Regulation of SuFu activity and stability is key to controlling Hh signaling. Here, we unveil SuFu Negating Protein 1 (SNEP1) as a novel Hh target, that enhances the ubiquitination and proteasomal degradation of SuFu and thus promotes Hh signaling. We further show that the E3 ubiquitin ligase LNX1 plays a critical role in the SNEP1-mediated degradation of SuFu. Accordingly, SNEP1 promotes colorectal cancer (CRC) cell proliferation and tumor growth. High levels of SNEP1 are detected in CRC tissues and are well correlated with poor prognosis in CRC patients. Moreover, SNEP1 overexpression reduces sensitivity to anti-Hh inhibitor in CRC cells. Altogether, our findings demonstrate that SNEP1 acts as a novel feedback regulator of Hh signaling by destabilizing SuFu and promoting tumor growth and anti-Hh resistance.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4334
Author(s):  
Lucie Appy ◽  
Crystalle Chardet ◽  
Suzanne Peyrottes ◽  
Béatrice Roy

Dinucleoside 5′,5′-polyphosphates (DNPs) are endogenous substances that play important intra- and extracellular roles in various biological processes, such as cell proliferation, regulation of enzymes, neurotransmission, platelet disaggregation and modulation of vascular tone. Various methodologies have been developed over the past fifty years to access these compounds, involving enzymatic processes or chemical procedures based either on P(III) or P(V) chemistry. Both solution-phase and solid-support strategies have been developed and are reported here. Recently, green chemistry approaches have emerged, offering attracting alternatives. This review outlines the main synthetic pathways for the preparation of dinucleoside 5′,5′-polyphosphates, focusing on pharmacologically relevant compounds, and highlighting recent advances.


2018 ◽  
Vol 218 (3) ◽  
pp. 742-756 ◽  
Author(s):  
Teresa T. Bonello ◽  
Mark Peifer

Key events ranging from cell polarity to proliferation regulation to neuronal signaling rely on the assembly of multiprotein adhesion or signaling complexes at particular subcellular sites. Multidomain scaffolding proteins nucleate assembly and direct localization of these complexes, and the protein Scribble and its relatives in the LAP protein family provide a paradigm for this. Scribble was originally identified because of its role in apical–basal polarity and epithelial integrity in Drosophila melanogaster. It is now clear that Scribble acts to assemble and position diverse multiprotein complexes in processes ranging from planar polarity to adhesion to oriented cell division to synaptogenesis. Here, we explore what we have learned about the mechanisms of action of Scribble in the context of its multiple known interacting partners and discuss how this knowledge opens new questions about the full range of Scribble protein partners and their structural and signaling roles.


2017 ◽  
Vol 13 (5) ◽  
pp. e1006332 ◽  
Author(s):  
Deepshikha Verma ◽  
Aruna Murmu ◽  
Samudrala Gourinath ◽  
Alok Bhattacharya ◽  
Kandala V. R. Chary

2015 ◽  
Vol 116 (6) ◽  
pp. 1039-1049 ◽  
Author(s):  
Jianhong Zuo ◽  
Meiling Wen ◽  
Mingsheng Lei ◽  
Xiang Peng ◽  
Xuefeng Yang ◽  
...  

2014 ◽  
Vol 29 (1) ◽  
pp. e8-e20 ◽  
Author(s):  
Rong Biaoxue ◽  
Cai Xiguang ◽  
Yang Shuanying

Annexin A1 is a 37 kDa calcium and phospholipid-binding protein that participates in several biological processes, such as inflammatory reactions, modulation of cell proliferation, regulation of cell death signaling, apoptosis, and, most importantly, tumor formation and development. Although annexin A1 has been implicated in the biology of various tumors, the findings are highly controversial and information regarding the underlying mechanism remains limited. Moreover, the mechanism by which annexin A1 participates in carcinogenesis and tumor progression is rather unclear. In the current study, we review the important biological functions of annexin A1 in different tumors. This work indicates that annexin A1 is a possible target for novel therapeutic intervention and that it is a potential biomarker for tumor diagnosis and screening.


Sign in / Sign up

Export Citation Format

Share Document