scholarly journals Probing the Environment of Emerin by Enhanced Ascorbate Peroxidase 2 (APEX2)-Mediated Proximity Labeling

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 605 ◽  
Author(s):  
Marret Müller ◽  
Christina James ◽  
Christof Lenz ◽  
Henning Urlaub ◽  
Ralph H. Kehlenbach

Emerin is one of the best characterized proteins of the inner nuclear membrane, but can also occur at the level of the endoplasmic reticulum. We now use enhanced ascorbate peroxidase 2 (APEX2) to probe the environment of emerin. APEX2 can be used as a genetic tag that produces short-lived yet highly reactive biotin species, allowing the modification of proteins that interact with or are in very close proximity to the tagged protein. Biotinylated proteins can be isolated using immobilized streptavidin and analyzed by mass spectrometry. As an alternative to the standard approach with a genetic fusion of APEX2 to emerin, we also used RAPIDS (rapamycin- and APEX-dependent identification of proteins by SILAC), a method with improved specificity, where the peroxidase interacts with the protein of interest (i.e., emerin) only upon addition of rapamycin to the cells. We compare these different approaches, which, together, identify well-known interaction partners of emerin like lamin A and the lamina associated polypeptide 1 (LAP1), as well as novel proximity partners.

1988 ◽  
Vol 107 (2) ◽  
pp. 397-406 ◽  
Author(s):  
R Stick ◽  
B Angres ◽  
C F Lehner ◽  
E A Nigg

In chicken, three structurally distinct nuclear lamin proteins have been described. According to their migration on two-dimensional gels, these proteins have been designated as lamins A, B1, and B2. To investigate the functional relationship between chicken lamins and their mammalian counterparts, we have examined here the state of individual chicken lamin proteins during mitosis. Current models proposing functional specializations of mammalian lamin subtypes are in fact largely based on the observation that during mitosis mammalian lamin B remains associated with membrane vesicles, whereas lamins A and C become freely soluble. Cell fractionation experiments combined with immunoblotting show that during mitosis both chicken lamins B1 and B2 remain associated with membranes, whereas lamin A exists in a soluble form. In situ immunoelectron microscopy carried out on mitotic cells also reveals membrane association of lamin B2, whereas the distribution of lamin A is random. From these results we conclude that both chicken lamins B1 and B2 may functionally resemble mammalian lamin B. Interestingly, immunolabeling of mitotic cells revealed an association of lamin B2 with extended membrane cisternae that resembled elements of the endoplasmic reticulum. Quantitatively, we found that all large endoplasmic reticulum-like membranes present in metaphase cells were decorated with lamin B2-specific antibodies. Given that labeling of these mitotic membranes was lower than labeling of interphase nuclear envelopes, it appears likely that during mitotic disassembly and reassembly of the nuclear envelope lamin B2 may reversibly distribute between the inner nuclear membrane and the endoplasmic reticulum.


Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641876899 ◽  
Author(s):  
Kirill Bersuker ◽  
James A. Olzmann

Lipid droplets (LDs) are conserved, endoplasmic reticulum (ER)-derived organelles that act as a dynamic cellular repository for neutral lipids. Numerous studies have examined the composition of LD proteomes by using mass spectrometry to identify proteins present in biochemically isolated buoyant fractions that are enriched in LDs. Although many bona fide LD proteins were identified, high levels of non-LD proteins that contaminate buoyant fractions complicate the detection of true LD proteins. To overcome this problem, we recently developed a proximity-labeling proteomic method to define high-confidence LD proteomes. Moreover, employing this approach, we discovered that ER-associated degradation impacts the composition of LD proteomes by targeting select LD proteins for clearance by the 26S proteasome as they transit between the ER and LDs. These findings implicate the ER as a site of LD protein degradation and underscore the high degree of crosstalk between ER and LDs.


2005 ◽  
Vol 53 (4) ◽  
pp. 497-507 ◽  
Author(s):  
Takao Senda ◽  
Akiko Iizuka-Kogo ◽  
Atsushi Shimomura

We examined the nuclear lamina in the quickly frozen anterior pituitary cells by electron microscopic techniques combined with freeze substitution, deep etching, and immunocytochemistry and compared it with that in the chemically fixed cells. By quick-freeze freeze-substitution electron microscopy, an electron-lucent layer, as thick as 20 nm, was revealed just inside the inner nuclear membrane, whereas in the conventionally glutaraldehyde-fixed cells the layer was not seen. By quick-freeze deep-etch electron microscopy, we could not distinguish definitively the layer corresponding to the nuclear lamina in either fresh unfixed or glutaraldehyde-fixed cells. Immunofluorescence microscopy showed that lamin A/C in the nucleus was detected in the acetone-fixed cells and briefly in paraformaldehyde-fixed cells but not in the cells with prolonged paraformaldehyde fixation. Nuclear localization of lamin A/C was revealed by immunogold electron microscopy also in the quickly frozen and freeze-substituted cells, but not in the paraformaldehyde-fixed cells. Lamin A/C was localized mainly in the peripheral nucleoplasm within 60 nm from the inner nuclear membrane, which corresponded to the nuclear lamina. These results suggest that the nuclear lamina can be preserved both ultrastructurally and immunocytochemically by quick-freezing fixation, rather than by conventional chemical fixation.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Wei-Wei Sun ◽  
Shi Jiao ◽  
Li Sun ◽  
Zhaocai Zhou ◽  
Xia Jin ◽  
...  

ABSTRACTThe postintegrational latency of HIV-1 is characterized by reversible silencing of long terminal repeat (LTR)-driven transcription of the HIV genome. It is known that the formation of repressive chromatin at the 5′-LTR of HIV-1 proviral DNA impedes viral transcription by blocking the recruitment of positive transcription factors. How the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. Elucidation of which chromatin reassembly factor mediates the reorganization of chromatin is likely to facilitate the understanding of the host’s modulation of HIV-1 transcription and latency. Here we revealed that “Sad1 and UNC84 domain containing 2” (SUN2), an inner nuclear membrane protein, maintained the repressive chromatin and inhibited HIV LTR-driven transcription of proviral DNA through an association with lamin A/C. Specifically, lamin A/C tethered SUN2 to the nucleosomes 1 and 2 of the HIV-1 5′-LTR to block the initiation and elongation of HIV-1 transcription. SUN2 knockdown converted chromatin to an active form and thus enhanced the phosphorylation of RNA polymerase II and its recruitment to the 5′-LTR HIV-1 proviral DNA, leading to reactivation of HIV-1 from latency. Conversely, the exogenous factors such as tumor necrosis factor alpha (TNF-α) induced reactivation, and the replication of HIV-1 led to the disassociation between SUN2 and lamin A/C, suggesting that disruption of the association between SUN2 and lamin A/C to convert the repressive chromatin to the active form might be a prerequisite for the initiation of HIV-1 transcription and replication. Together, our findings indicate that SUN2 is a novel chromatin reassembly factor that helps to maintain chromatin in a repressive state and consequently inhibits HIV-1 transcription.IMPORTANCEDespite the successful use of scores of antiretroviral drugs, HIV latency poses a major impediment to virus eradication. Elucidation of the mechanism of latency facilitates the discovery of new therapeutic strategies. It has been known that the formation of repressive chromatin at the 5′-LTR of HIV-1 proviral DNA impedes viral transcription and maintains viral latency, but how the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. In this study, we performed in-depth virological and cell biological studies and discovered that an inner nuclear membrane protein, SUN2, is a novel chromatin reassembly factor that maintains repressive chromatin and thus modulates HIV-1 transcription and latency: therefore, targeting SUN2 may lead to new strategies for HIV cure.


2015 ◽  
Vol 128 (15) ◽  
pp. 2854-2865 ◽  
Author(s):  
R. E. Goodchild ◽  
A. L. Buchwalter ◽  
T. V. Naismith ◽  
K. Holbrook ◽  
K. Billion ◽  
...  

2021 ◽  
Author(s):  
Sandra Vidak ◽  
Leonid A. Serebryannyy ◽  
Tom Misteli

One of the major cellular mechanisms to ensure protein homeostasis is the endoplasmic reticulum (ER) stress response. This pathway is typically triggered by accumulation of misfolded proteins in the ER lumen. Here we describe activation of ER stress via protein aggregation in the cell nucleus. We find in the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) activation of ER stress due to the aggregation of the diseases-causing progerin protein at the nuclear envelope. The presence of nucleoplasmic protein aggregates is sensed and signaled to the ER lumen via immobilization and clustering of the inner nuclear membrane protein SUN2, leading to activation of the Unfolded Protein Response (UPR). These results identify a nuclear trigger of ER stress and they provide insight into the molecular disease mechanisms of HGPS.


2016 ◽  
Author(s):  
Nikolay Pestov ◽  
Mikhail Shakhparonov ◽  
Nikolay Pestov ◽  
Tatyana Korneenko ◽  
Nikolai Modyanov

2019 ◽  
Vol 20 (2) ◽  
pp. 334 ◽  
Author(s):  
Marina Blenski ◽  
Ralph Kehlenbach

LRRC59 (leucine-rich repeat-containing protein 59) is a tail-anchored protein with a single transmembrane domain close to its C-terminal end that localizes to the endoplasmic reticulum (ER) and the nuclear envelope. Here, we investigate the mechanisms of membrane integration of LRRC59 and its targeting to the inner nuclear membrane (INM). Using purified microsomes, we show that LRRC59 can be post-translationally inserted into ER-derived membranes. The TRC-pathway, a major route for post-translational membrane insertion, is not required for LRRC59. Like emerin, another tail-anchored protein, LRRC59 reaches the INM, as demonstrated by rapamycin-dependent dimerization assays. Using different approaches to inhibit importin α/β-dependent nuclear import of soluble proteins, we show that the classic nuclear transport machinery does not play a major role in INM-targeting of LRRC59. Instead, the size of the cytoplasmic domain of LRRC59 is an important feature, suggesting that targeting is governed by passive diffusion.


Sign in / Sign up

Export Citation Format

Share Document