scholarly journals Targeting of LRRC59 to the Endoplasmic Reticulum and the Inner Nuclear Membrane

2019 ◽  
Vol 20 (2) ◽  
pp. 334 ◽  
Author(s):  
Marina Blenski ◽  
Ralph Kehlenbach

LRRC59 (leucine-rich repeat-containing protein 59) is a tail-anchored protein with a single transmembrane domain close to its C-terminal end that localizes to the endoplasmic reticulum (ER) and the nuclear envelope. Here, we investigate the mechanisms of membrane integration of LRRC59 and its targeting to the inner nuclear membrane (INM). Using purified microsomes, we show that LRRC59 can be post-translationally inserted into ER-derived membranes. The TRC-pathway, a major route for post-translational membrane insertion, is not required for LRRC59. Like emerin, another tail-anchored protein, LRRC59 reaches the INM, as demonstrated by rapamycin-dependent dimerization assays. Using different approaches to inhibit importin α/β-dependent nuclear import of soluble proteins, we show that the classic nuclear transport machinery does not play a major role in INM-targeting of LRRC59. Instead, the size of the cytoplasmic domain of LRRC59 is an important feature, suggesting that targeting is governed by passive diffusion.

2002 ◽  
Vol 115 (1) ◽  
pp. 61-70 ◽  
Author(s):  
John M. K. Mislow ◽  
Marian S. Kim ◽  
Dawn Belt Davis ◽  
Elizabeth M. McNally

Mutations in the genes encoding the inner nuclear membrane proteins lamin A/C and emerin produce cardiomyopathy and muscular dystrophy in humans and mice. The mechanism by which these broadly expressed gene products result in tissue-specific dysfunction is not known. We have identified a protein of the inner nuclear membrane that is highly expressed in striated and smooth muscle. This protein, myne-1 (myocyte nuclear envelope), is predicted to have seven spectrin repeats, an interrupted LEM domain and a single transmembrane domain at its C-terminus. We found that myne-1 is expressed upon early muscle differentiation in multiple intranuclear foci concomitant with lamin A/C expression. In mature muscle, myne-1 and lamin A/C are perfectly colocalized, although colocalization with emerin is only partial. Moreover, we show that myne-1 and lamin A/C coimmunoprecipitate from differentiated muscle in vitro. The muscle-specific inner nuclear envelope expression of myne-1, along with its interaction with lamin A/C, indicates that this gene is a potential mediator of cardiomyopathy and muscular dystrophy.


2011 ◽  
Vol 193 (1) ◽  
pp. 109-123 ◽  
Author(s):  
Nikolaj Zuleger ◽  
David A. Kelly ◽  
A. Christine Richardson ◽  
Alastair R. W. Kerr ◽  
Martin W. Goldberg ◽  
...  

The nuclear envelope contains >100 transmembrane proteins that continuously exchange with the endoplasmic reticulum and move within the nuclear membranes. To better understand the organization and dynamics of this system, we compared the trafficking of 15 integral nuclear envelope proteins using FRAP. A surprising 30-fold range of mobilities was observed. The dynamic behavior of several of these proteins was also analyzed after depletion of ATP and/or Ran, two functions implicated in endoplasmic reticulum–inner nuclear membrane translocation. This revealed that ATP- and Ran-dependent translocation mechanisms are distinct and not used by all inner nuclear membrane proteins. The Ran-dependent mechanism requires the phenylalanine-glycine (FG)-nucleoporin Nup35, which is consistent with use of the nuclear pore complex peripheral channels. Intriguingly, the addition of FGs to membrane proteins reduces FRAP recovery times, and this also depends on Nup35. Modeling of three proteins that were unaffected by either ATP or Ran depletion indicates that the wide range in mobilities could be explained by differences in binding affinities in the inner nuclear membrane.


F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1804 ◽  
Author(s):  
Peter Wild ◽  
Andres Kaech ◽  
Elisabeth M. Schraner ◽  
Ladina Walser ◽  
Mathias Ackermann

Background: Herpesvirus capsids are assembled in the nucleus, translocated to the perinuclear space by budding, acquiring tegument and envelope, or released to the cytoplasm via impaired nuclear envelope. One model proposes that envelopment, “de-envelopment” and “re-envelopment” is essential for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the “primary” envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of alternative exit routes.Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols.Results:  The Golgi complex is a compact entity in a juxtanuclear position covered by a membrane on thecisface. Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced.Conclusions: The data suggest that virions derived by budding at nuclear membranes are intraluminally transported from the perinuclear space via Golgi -endoplasmic reticulum transitions into Golgi cisternae for packaging. Virions derived by budding at nuclear membranes are infective like Us3 deletion mutants, which  accumulate in the perinuclear space. Therefore, i) de-envelopment followed by re-envelopment is not essential for production of infective progeny virus, ii) the process taking place at the outer nuclear membrane is budding not fusion, and iii) naked capsids gain access to the cytoplasmic matrix via impaired nuclear envelope as reported earlier.


2019 ◽  
Author(s):  
Marina Vietri ◽  
Sebastian W. Schultz ◽  
Aurélie Bellanger ◽  
Carl M. Jones ◽  
Camilla Raiborg ◽  
...  

AbstractThe ESCRT-III membrane fission machinery1,2 restores nuclear envelope integrity during mitotic exit3,4 and interphase5,6. Whereas primary nuclei resealing takes minutes, micronuclear envelope ruptures appear irreversible and result in catastrophic collapse associated with chromosome fragmentation and rearrangements (chromothripsis), thought to be a major driving force in cancer development7-10. Despite its importance11-13, the mechanistic underpinnings of nuclear envelope sealing in primary nuclei and the defects observed in micronuclei remain largely unknown. Here we show that CHMP7, the nucleator of ESCRT-III filaments at the nuclear envelope3,14, and the inner nuclear membrane protein LEMD215 act as a compartmentalization sensor detecting the loss of nuclear integrity. In cells with intact nuclear envelope, CHMP7 is actively excluded from the nucleus to preclude its binding to LEMD2. Nuclear influx of CHMP7 results in stable association with LEMD2 at the inner nuclear membrane that licenses local polymerization of ESCRT-III. Tight control of nuclear CHMP7 levels is critical, as induction of nuclear CHMP7 mutants is sufficient to induce unrestrained growth of ESCRT-III foci at the nuclear envelope, causing dramatic membrane deformation, local DNA torsional stress, single-stranded DNA formation and fragmentation of the underlying chromosomes. At micronuclei, membrane rupture is not associated with repair despite timely recruitment of ESCRT-III. Instead, micronuclei inherently lack the capacity to restrict accumulation of CHMP7 and LEMD2. This drives unrestrained ESCRT-III recruitment, membrane deformation and DNA defects that strikingly resemble those at primary nuclei upon induction of nuclear CHMP7 mutants. Preventing ESCRT-III recruitment suppresses membrane deformation and DNA damage, without restoring nucleocytoplasmic compartmentalization. We propose that the ESCRT-III nuclear integrity surveillance machinery is a double-edged sword, as its exquisite sensitivity ensures rapid repair at primary nuclei while causing unrestrained polymerization at micronuclei, with catastrophic consequences for genome stability16-18.


1999 ◽  
Vol 77 (4) ◽  
pp. 321-329 ◽  
Author(s):  
Khaldon Bodoor ◽  
Sarah Shaikh ◽  
Paul Enarson ◽  
Sharmin Chowdhury ◽  
Davide Salina ◽  
...  

Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. The current view of NPC organization features a massive symmetrical framework that is embedded in the double membranes of the nuclear envelope. It embraces a central channel of as yet ill-defined structure but which may accommodate particles with diameters up to 26 nm provided that they bear specific import/export signals. Attached to both faces of the central framework are peripheral structures, short cytoplasmic filaments, and a nuclear basket assembly, which interact with molecules transiting the NPC. The mechanisms of assembly and the nature of NPC structural intermediates are still poorly understood. However, mutagenesis and expression studies have revealed discrete sequences within certain NPC proteins that are necessary and sufficient for their appropriate targeting. In addition, some details are emerging from observations on cells undergoing mitosis where the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized to form nuclear envelopes in the two daughter cells. To date, it has been possible to define a time course of postmitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral inner nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a dynamic component of the nuclear basket, associates with chromatin towards the end of anaphase coincident with, although independent of, the inner nuclear membrane protein, LAP2. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, p54, p45) during mitosis, and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates and which may therefore represent an essential component of the central framework of the NPC. Key words: nuclear pore complex, nucleoporin, mitosis, nuclear transport


2010 ◽  
Vol 21 (2) ◽  
pp. 354-368 ◽  
Author(s):  
Monika Zwerger ◽  
Thorsten Kolb ◽  
Karsten Richter ◽  
Iakowos Karakesisoglou ◽  
Harald Herrmann

Lamin B receptor (LBR) is an inner nuclear membrane protein involved in tethering the nuclear lamina and the underlying chromatin to the nuclear envelope. In addition, LBR exhibits sterol reductase activity. Mutations in the LBR gene cause two different human diseases: Pelger-Huët anomaly and Greenberg skeletal dysplasia, a severe chrondrodystrophy causing embryonic death. Our study aimed at investigating the effect of five LBR disease mutants on human cultured cells. Three of the tested LBR mutants caused a massive compaction of chromatin coincidental with the formation of a large nucleus-associated vacuole (NAV) in several human cultured cell lines. Live cell imaging and electron microscopy revealed that this structure was generated by the separation of the inner and outer nuclear membrane. During NAV formation, nuclear pore complexes and components of the linker of nucleoskeleton and cytoskeleton complex were lost in areas of membrane separation. Concomitantly, a large number of smaller vacuoles formed throughout the cytoplasm. Notably, forced expression of the two structurally related sterol reductases transmembrane 7 superfamily member 2 and 7-dehydrocholesterol reductase caused, even in their wild-type form, a comparable phenotype in susceptible cell lines. Hence, LBR mutant variants and sterol reductases can severely interfere with the regular organization of the nuclear envelope and the endoplasmic reticulum.


1988 ◽  
Vol 107 (2) ◽  
pp. 397-406 ◽  
Author(s):  
R Stick ◽  
B Angres ◽  
C F Lehner ◽  
E A Nigg

In chicken, three structurally distinct nuclear lamin proteins have been described. According to their migration on two-dimensional gels, these proteins have been designated as lamins A, B1, and B2. To investigate the functional relationship between chicken lamins and their mammalian counterparts, we have examined here the state of individual chicken lamin proteins during mitosis. Current models proposing functional specializations of mammalian lamin subtypes are in fact largely based on the observation that during mitosis mammalian lamin B remains associated with membrane vesicles, whereas lamins A and C become freely soluble. Cell fractionation experiments combined with immunoblotting show that during mitosis both chicken lamins B1 and B2 remain associated with membranes, whereas lamin A exists in a soluble form. In situ immunoelectron microscopy carried out on mitotic cells also reveals membrane association of lamin B2, whereas the distribution of lamin A is random. From these results we conclude that both chicken lamins B1 and B2 may functionally resemble mammalian lamin B. Interestingly, immunolabeling of mitotic cells revealed an association of lamin B2 with extended membrane cisternae that resembled elements of the endoplasmic reticulum. Quantitatively, we found that all large endoplasmic reticulum-like membranes present in metaphase cells were decorated with lamin B2-specific antibodies. Given that labeling of these mitotic membranes was lower than labeling of interphase nuclear envelopes, it appears likely that during mitotic disassembly and reassembly of the nuclear envelope lamin B2 may reversibly distribute between the inner nuclear membrane and the endoplasmic reticulum.


2006 ◽  
Vol 17 (4) ◽  
pp. 1768-1778 ◽  
Author(s):  
Joseph L. Campbell ◽  
Alexander Lorenz ◽  
Keren L. Witkin ◽  
Thomas Hays ◽  
Josef Loidl ◽  
...  

Little is known about what dictates the round shape of the yeast Saccharomyces cerevisiae nucleus. In spo7Δ mutants, the nucleus is misshapen, exhibiting a single protrusion. The Spo7 protein is part of a phosphatase complex that represses phospholipid biosynthesis. Here, we report that the nuclear protrusion of spo7Δ mutants colocalizes with the nucleolus, whereas the nuclear compartment containing the bulk of the DNA is unaffected. Using strains in which the nucleolus is not intimately associated with the nuclear envelope, we show that the single nuclear protrusion of spo7Δ mutants is not a result of nucleolar expansion, but rather a property of the nuclear membrane. We found that in spo7Δ mutants the peripheral endoplasmic reticulum (ER) membrane was also expanded. Because the nuclear membrane and the ER are contiguous, this finding indicates that in spo7Δ mutants all ER membranes, with the exception of the membrane surrounding the bulk of the DNA, undergo expansion. Our results suggest that the nuclear envelope has distinct domains that differ in their ability to resist membrane expansion in response to increased phospholipid biosynthesis. We further propose that in budding yeast there is a mechanism, or structure, that restricts nuclear membrane expansion around the bulk of the DNA.


2010 ◽  
Vol 38 (1) ◽  
pp. 278-280 ◽  
Author(s):  
Glenn E. Morris ◽  
K. Natalie Randles

The giant isoforms of nesprins 1 and 2 are emerging as important players in cellular organization, particularly in the positioning of nuclei, and possibly other organelles, within the cytoplasm. The experimental evidence suggests that nesprins also occur at the inner nuclear membrane, where they interact with the nuclear lamina. In this paper, we consider whether this is consistent with current ideas about nesprin anchorage and about mechanisms for nuclear import of membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document