scholarly journals VEGF Triggers Transient Induction of Autophagy in Endothelial Cells via AMPKα1

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 687 ◽  
Author(s):  
Katrin Spengler ◽  
Nderim Kryeziu ◽  
Silke Große ◽  
Alexander S. Mosig ◽  
Regine Heller

AMP-activated protein kinase (AMPK) is activated by vascular endothelial growth factor (VEGF) in endothelial cells and it is significantly involved in VEGF-induced angiogenesis. This study investigates whether the VEGF/AMPK pathway regulates autophagy in endothelial cells and whether this is linked to its pro-angiogenic role. We show that VEGF leads to AMPKα1-dependent phosphorylation of Unc-51-like kinase 1 (ULK1) at its serine residue 556 and to the subsequent phosphorylation of the ULK1 substrate ATG14. This triggers initiation of autophagy as shown by phosphorylation of ATG16L1 and conjugation of the microtubule-associated protein light chain 3B, which indicates autophagosome formation; this is followed by increased autophagic flux measured in the presence of bafilomycin A1 and by reduced expression of the autophagy substrate p62. VEGF-induced autophagy is transient and probably terminated by mechanistic target of rapamycin (mTOR), which is activated by VEGF in a delayed manner. We show that functional autophagy is required for VEGF-induced angiogenesis and may have specific functions in addition to maintaining homeostasis. In line with this, inhibition of autophagy impaired VEGF-mediated formation of the Notch intracellular domain, a critical regulator of angiogenesis. Our study characterizes autophagy induction as a pro-angiogenic function of the VEGF/AMPK pathway and suggests that timely activation of autophagy-initiating pathways may help to initiate angiogenesis.

2021 ◽  
Vol 22 (2) ◽  
pp. 798
Author(s):  
Ibukunoluwapo O. Zabroski ◽  
Matthew A. Nugent

The binding of vascular endothelial growth factor A (VEGF) to VEGF receptor-2 (VEGFR-2) stimulates angiogenic signaling. Lipid rafts are cholesterol-dense regions of the plasma membrane that serve as an organizational platform for biomolecules. Although VEGFR2 has been shown to colocalize with lipid rafts to regulate its activation, the effect of lipid rafts on non-activated VEGFR2 has not been explored. Here, we characterized the involvement of lipid rafts in modulating the stability of non-activated VEGFR2 in endothelial cells using raft disrupting agents: methyl-β-cyclodextrin, sphingomyelinase and simvastatin. Disrupting lipid rafts selectively decreased the levels of non-activated VEGFR2 as a result of increased lysosomal degradation. The decreased expression of VEGFR2 translated to reduced VEGF-activation of the extracellular signal-regulated protein kinases (ERK). Overall, our results indicate that lipid rafts stabilize VEGFR2 and its associated signal transduction activities required for angiogenesis. Thus, modulation of lipid rafts may provide a means to regulate the sensitivity of endothelial cells to VEGF stimulation. Indeed, the ability of simvastatin to down regulate VEGFR2 and inhibit VEGF activity suggest a potential mechanism underlying the observation that this drug improves outcomes in the treatment of certain cancers.


Author(s):  
Kamil Wartalski ◽  
Gabriela Gorczyca ◽  
Jerzy Wiater ◽  
Zbigniew Tabarowski ◽  
Małgorzata Duda

AbstractEndothelial cells (ECs), the primary component of the vasculature, play a crucial role in neovascularization. However, the number of endogenous ECs is inadequate for both experimental purposes and clinical applications. Porcine ovarian putative stem cells (poPSCs), although not pluripotent, are characterized by great plasticity. Therefore, this study aimed to investigate whether poPSCs have the potential to differentiate into cells of endothelial lineage. poPSCs were immunomagnetically isolated from postnatal pig ovaries based on the presence of SSEA-4 protein. Expression of mesenchymal stem cells (MSCs) markers after pre-culture, both at the level of mRNA: ITGB1, THY, and ENG and corresponding protein: CD29, CD90, and CD105 were significantly higher compared to the control ovarian cortex cells. To differentiate poPSCs into ECs, inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied. After 14 days, poPSC differentiation into ECs was confirmed by immunofluorescence staining for vascular endothelial cadherin (VECad) and vascular endothelial growth factor receptor-2 (VEGFR-2). Semi-quantitative WB analysis of these proteins confirmed their high abundance. Additionally, qRT-PCR showed that mRNA expression of corresponding marker genes: CDH5, KDR was significantly higher compared with undifferentiated poPSCs. Finally, EC functional status was confirmed by the migration test that revealed that they were capable of positive chemotaxis, while tube formation assay demonstrated their ability to develop capillary networks. In conclusion, our results provided evidence that poPSCs may constitute the MSC population in the ovary and confirmed that they might be a potential source of ECs for tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document