scholarly journals BMP-2 Variants in Breast Epithelial to Mesenchymal Transition and Microcalcifications Origin

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1381 ◽  
Author(s):  
Manuel Scimeca ◽  
Raffaella Giocondo ◽  
Manuela Montanaro ◽  
Annarita Granaglia ◽  
Rita Bonfiglio ◽  
...  

This study aims to investigate the possible different roles of the BMP-2 variants, cytoplasmic and nuclear variant, in both epithelial to mesenchymal transition and in microcalcifications origin in human breast cancers. To this end, the in situ expression of cytoplasmic and nuclear BMP-2 was associated with the expression of the main epithelial to mesenchymal transition biomarkers (e-cadherin and vimentin) and molecules involved in bone metabolisms (RUNX2, RANKL, SDF-1) by immunohistochemistry. In addition, the expression of cytoplasmic and nuclear BMP-2 was associated with the presence of microcalcifications. Our data showed a significant association among the number of cytoplasmic BMP-2-positive cells and the number of both vimentin (positive association) and e-cadherin (negative association) positive breast cells. Conversely, no associations were found concerning the nuclear BMP-2-positive breast cells. Surprisingly, the opposite result was obtained by analyzing the variants of BMP-2 and both the expression of RANKL and SDF-1 and the presence of microcalcifications. Specifically, the presence of microcalcifications was related to the expression of nuclear BMP-2 variant rather than the cytoplasmic one, as well as a strong association between the number of nuclear BMP-2 and the expression of the main breast osteoblast-like cells (BOLCs) biomarkers. To further corroborate these data, an in vitro experiment for demonstrating the co-expression of nBMP-2 and RANKL or vimentin or SDF-1 in breast cancer cells that acquire the capability to produce microcalcifications was developed. These investigations confirmed the association between the nBMP-2 expression and both RANKL and SDF-1. The data supports the idea that whilst cytoplasmic BMP-2 can be involved in epithelial to mesenchymal transition phenomenon, the nuclear variant is related to the essential mechanisms for the formation of breast microcalcifications. In conclusion, from these experimental and translational perspectives, the complexity of BMP-2 signaling will require a detailed understanding of the involvement of specific BMP-2 variants in breast cancers.

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1340 ◽  
Author(s):  
Olaia Martinez-Iglesias ◽  
Alba Casas-Pais ◽  
Raquel Castosa ◽  
Andrea Díaz-Díaz ◽  
Daniel Roca-Lema ◽  
...  

The requirement of the E3 ubiquitin-ligase Hakai for the ubiquitination and subsequent degradation of E-cadherin has been associated with enhanced epithelial-to-mesenchymal transition (EMT), tumour progression and carcinoma metastasis. To date, most of the reported EMT-related inhibitors were not developed for anti-EMT purposes, but indirectly affect EMT. On the other hand, E3 ubiquitin-ligase enzymes have recently emerged as promising therapeutic targets, as their specific inhibition would prevent wider side effects. Given this background, a virtual screening was performed to identify novel specific inhibitors of Hakai, targeted against its phosphotyrosine-binding pocket, where phosphorylated-E-cadherin specifically binds. We selected a candidate inhibitor, Hakin-1, which showed an important effect on Hakai-induced ubiquitination. Hakin-1 also inhibited carcinoma growth and tumour progression both in vitro, in colorectal cancer cell lines, and in vivo, in a tumour xenograft mouse model, without apparent systemic toxicity in mice. Our results show for the first time that a small molecule putatively targeting the E3 ubiquitin-ligase Hakai inhibits Hakai-dependent ubiquitination of E-cadherin, having an impact on the EMT process. This represents an important step forward in a future development of an effective therapeutic drug to prevent or inhibit carcinoma tumour progression.


2018 ◽  
Author(s):  
Aarif Siddiqui ◽  
Paradesi Gollavilli ◽  
Annemarie Schwab ◽  
Maria Eleni Vazakidou ◽  
Pelin G Ersan ◽  
...  

ABSTRACTCancer cells frequently boost nucleotide metabolism (NM) to support their increased proliferation, but the consequences of elevated NM on tumor de-differentiation are mostly unexplored. Here, we identified a role for thymidylate synthase (TS), a NM enzyme and established drug target, in cancer cell de-differentiation and investigated its clinical significance in breast cancer (BC).In vitro, TS knockdown increased the population of CD24+differentiated cells, and attenuated migration and sphere-formation. RNA-seq profiling indicated a repression of epithelial-to-mesenchymal transition (EMT) signature genes upon TS knockdown, and TS-deficient cells showed an increased ability to invade and metastasizein vivo, consistent with the occurrence of a partial EMT phenotype. Mechanistically, TS enzymatic activity was found essential for the maintenance of the EMT/stem-like state by fueling a DPYD-dependent pyrimidine catabolism. In patient tissues, TS levels were found significantly higher in poorly differentiated and in triple negative BC (TNBC), and strongly correlated with worse prognosis. The present study provides therationaleto study in-depth the role of NM at the crossroads of proliferation and differentiation, and depicts new avenues for the design of novel drug combinations for the treatment of BC.


2009 ◽  
Vol 20 (8) ◽  
pp. 2207-2217 ◽  
Author(s):  
Justin M. Drake ◽  
Garth Strohbehn ◽  
Thomas B. Bair ◽  
Jessica G. Moreland ◽  
Michael D. Henry

Metastatic colonization involves cancer cell lodgment or adherence in the microvasculature and subsequent migration of those cells across the endothelium into a secondary organ site. To study this process further, we analyzed transendothelial migration of human PC-3 prostate cancer cells in vitro. We isolated a subpopulation of cells, TEM4-18, that crossed an endothelial barrier more efficiently, but surprisingly, were less invasive than parental PC-3 cells in other contexts in vitro. Importantly, TEM4-18 cells were more aggressive than PC-3 cells in a murine metastatic colonization model. Microarray and FACS analysis of these cells showed that the expression of many genes previously associated with leukocyte trafficking and cancer cell extravasation were either unchanged or down-regulated. Instead, TEM4-18 cells exhibited characteristic molecular markers of an epithelial-to-mesenchymal transition (EMT), including frank loss of E-cadherin expression and up-regulation of the E-cadherin repressor ZEB1. Silencing ZEB1 in TEM4-18 cells resulted in increased E-cadherin and reduced transendothelial migration. TEM4-18 cells also express N-cadherin, which was found to be necessary, but not sufficient for increased transendothelial migration. Our results extend the role of EMT in metastasis to transendothelial migration and implicate ZEB1 and N-cadherin in this process in prostate cancer cells.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 305 ◽  
Author(s):  
Shiqi Lin ◽  
Caiyun Zhang ◽  
Fangyuan Liu ◽  
Jiahui Ma ◽  
Fujuan Jia ◽  
...  

Actinomycin V, an analog of actinomycin D produced by the marine-derived actinomycete Streptomyces sp., possessing a 4-ketoproline instead of a 4-proline in actinomycin D. In this study, the involvement of snail/slug-mediated epithelial-mesenchymal transition (EMT) in the anti-migration and -invasion actions of actinomycin V was investigated in human breast cancer MDA-MB-231 cells in vitro. Cell proliferation effect was evaluated by 3-(4,5-Dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. Wound-healing and Transwell assay were performed to investigate the anti-migration and -invasion effects of actinomycin V. Western blotting was used to detect the expression levels of E-cadherin, N-cadherin, vimentin, snail, slug, zinc finger E-box binding homeobox 1 (ZEB1), and twist proteins and the mRNA levels were detected by rt-PCR. Actinomycin V showed stronger cytotoxic activity than that of actinomycin D. Actinomycin V up-regulated both of the protein and mRNA expression levels of E-cadherin and down-regulated that of N-cadherin and vimentin in the same cells. In this connection, actinomycin V decreased the snail and slug protein expression, and consequently inhibited cells EMT procession. Our results suggest that actinomycin V inhibits EMT-mediated migration and invasion via decreasing snail and slug expression, which exhibits therapeutic potential for the treatment of breast cancer and further toxicity investigation in vivo is needed.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e17083 ◽  
Author(s):  
Elad Katz ◽  
Sylvie Dubois-Marshall ◽  
Andrew H. Sims ◽  
Philippe Gautier ◽  
Helen Caldwell ◽  
...  

2013 ◽  
Vol 138 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Antoinette Hollestelle ◽  
Justine K. Peeters ◽  
Marcel Smid ◽  
Mieke Timmermans ◽  
Leon C. Verhoog ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xuan Liu ◽  
Qing Ji ◽  
Wanli Deng ◽  
Ni Chai ◽  
Yuanyuan Feng ◽  
...  

JPJD was an ideal alternative traditional Chinese medicine compound in the prevention and treatment of CRC, but its underlying mechanisms has not been fully elucidated. In this study, we demonstrated in vitro that TGF-β-induced EMT promoted the invasion and metastasis of CRC cells, reduced the expression of E-cadherin, and elevated the expression of Vimentin. However, JPJD could inhibit the invasive and migratory ability of TGF-β-stimulated CRC cells in a concentration-dependent manner through increasing the expression of E-cadherin and repressing the expression of Vimentin, as well as the inhibition of TGF-β/Smad signaling pathway. Meanwhile, JPJD reduced the transcriptional activities of EMT-associated factors Snail and E-cadherin during the initiation of TGF-β-induced EMT. In vivo, the results demonstrated that JPJD can significantly inhibit the liver and lung metastasis of orthotopic CRC tumor in nude mice, as well as significantly prolonging the survival time of tumor-bearing in a dose-dependent manner. Additionally, JPJD can upregulate the expression of E-cadherin and Smad2/3 in the cytoplasm and downregulate the expression of Vimentin, p-Smad2/3, and Snail in the orthotopic CRC tumor tissues. In conclusions, our new findings provided evidence that JPJD could inhibit TGF-β-induced EMT in CRC through TGF-β/Smad mediated Snail/E-cadherin expression.


Sign in / Sign up

Export Citation Format

Share Document