scholarly journals All-Trans Retinoic Acid Enhances both the Signaling for Priming and the Glycolysis for Activation of NLRP3 Inflammasome in Human Macrophage

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1591
Author(s):  
Ahmad Alatshan ◽  
Gergő E. Kovács ◽  
Azzam Aladdin ◽  
Zsolt Czimmerer ◽  
Krisztina Tar ◽  
...  

All-trans retinoic acid (ATRA) is a derivative of vitamin A that has many important biological functions, including the modulation of immune responses. ATRA actions are mediated through the retinoic acid receptor that functions as a nuclear receptor, either regulating gene transcription in the nucleus or modulating signal transduction in the cytoplasm. NLRP3 inflammasome is a multiprotein complex that is activated by a huge variety of stimuli, including pathogen- or danger-related molecules. Activation of the inflammasome is required for the production of IL-1β, which drives the inflammatory responses of infectious or non-infectious sterile inflammation. Here, we showed that ATRA prolongs the expression of IL-6 and IL-1β following a 2-, 6-, 12-, and 24-h LPS (100ng/mL) activation in human monocyte-derived macrophages. We describe for the first time that ATRA modulates both priming and activation signals required for NLRP3 inflammasome function. ATRA alone induces NLRP3 expression, and enhances LPS-induced expression of NLRP3 and pro-IL-1β via the regulation of signal transduction pathways, like NF-κB, p38, and ERK. We show that ATRA alleviates the negative feedback loop effect of IL-10 anti-inflammatory cytokine on NLRP3 inflammasome function by inhibiting the Akt-mTOR-STAT3 signaling axis. We also provide evidence that ATRA enhances hexokinase 2 expression, and shifts the metabolism of LPS-activated macrophages toward glycolysis, leading to the activation of NLRP3 inflammasome.

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1313 ◽  
Author(s):  
Marta Sobas ◽  
Maria Carme Talarn-Forcadell ◽  
David Martínez-Cuadrón ◽  
Lourdes Escoda ◽  
María J. García-Pérez ◽  
...  

It has been suggested that 1–2% of acute promyelocytic leukemia (APL) patients present variant rearrangements of retinoic acid receptor alpha (RARα) fusion gene, with the promyelocytic leukaemia zinc finger (PLZF)/RARα being the most frequent. Resistance to all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) has been suggested in PLZF/RARα and other variant APLs. Herein, we analyze the incidence, characteristics, and outcomes of variant APLs reported to the multinational PETHEMA (Programa para el Tratamiento de Hemopatias Malignas) registry, and we perform a systematic review in order to shed light on strategies to improve management of these extremely rare diseases. Of 2895 patients with genetically confirmed APL in the PETHEMA registry, 11 had variant APL (0.4%) (9 PLZF-RARα and 2 NPM1-RARα), 9 were men, with median age of 44.6 years (3 months to 76 years), median leucocytes (WBC) 16.8 × 109/L, and frequent coagulopathy. Eight patients were treated with ATRA plus chemotherapy-based regimens, and 3 with chemotherapy-based. As compared to previous reports, complete remission and survival was slightly better in our cohort, with 73% complete remission (CR) and 73% survival despite a high relapse rate (43%). After analyzing our series and performing a comprehensive and critical review of the literature, strong recommendations on appropriate management of variant APL are not possible due to the low number and heterogeneity of patients reported so far.


1995 ◽  
Vol 308 (1) ◽  
pp. 353-359 ◽  
Author(s):  
M Berggren Söderlund ◽  
G Johannesson ◽  
G Fex

all-trans-Retinoic acid, one of the hormonally active derivatives of vitamin A, occurs physiologically in plasma at a concentration below 10 nmol/l. The methods currently used for its quantification are based on HPLC, need about 1 ml of serum, are relatively laborious and thus not well suited for mass analysis. The affinity and specificity of retinoic acid receptors for all-trans-retinoic acid encouraged us to express both the entire human retinoic acid receptor beta (RAR-beta) and two versions of its retinoic acid-binding domain in Escherichia coli in the hope that these recombinant proteins might be used as binders in a ligand-binding assay for all-trans-retinoic acid. The recombinant receptors, the whole receptor [RAR-beta-(V7-Q448)], corresponding to domains A-F, and the ligand-binding domain [RAR-beta-(E149-Q448)], corresponding to domains D-F, were expressed in the vector pET 3d/BL21 (DE3) as inclusion bodies, solubilized with guanidinium chloride, renatured and purified by ion-exchange chromatography. RAR-beta-(P193-Q448), corresponding to domains E-F, was expressed in the vector pET 3d/BL21(DE3)pLysS, and purified by reversed-phase chromatography. Under non-denaturing conditions, the expressed whole receptor [RAR-beta-(V7-Q448)] and the D-F construct (RAR-beta-(E149-Q448)] behaved chromatographically as monomeric proteins whereas the E-F construct [RAR-beta-(P193-Q448)] had a strong tendency to aggregate. RAR-beta-(V7-Q448) and RAR-beta-(E149-Q448) had similar Kd values for all-trans-retinoic acid (1.4 and 0.6 nmol/l respectively) whereas RAR-beta-(P193-Q448) bound all-trans-retinoic acid less avidly (Kd 9.6 nmol/l). 9-cis-Retinoic acid bound to RAR-beta-(E149-Q448) and RAR-beta-(V7-Q448) as avidly as all-trans-retinoic acid. Competition experiments showed weak or no binding of 4-oxo-all-trans-retinoic acid, 4-oxo-13-cis-retinoic acid, 13-cis-retinoic acid, acitretin and retinol by RAR-beta-(E149-Q448).


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Thi Xoan Hoang ◽  
Jong Hyeok Jung ◽  
Jae Young Kim

All-trans retinoic acid (ATRA), an active form of vitamin A, exerts immunomodulatory functions. In this study, we examined the immune potentiating effect of ATRA on bacterial flagellin-induced NF-κB activation and proinflammatory cytokine production in human monocytic cell line THP-1. ATRA treatment significantly enhanced the flagellin-induced NF-κB/AP-1 activity in THP-1 via the RAR/RXR pathway. Similarly, ATRA enhanced the expression and production of TNF-α and IL-1β in THP-1 cells upon flagellin challenge. The cell surface expression of toll-like receptor 5 (TLR5), which is the receptor for bacterial flagellin, was significantly reduced by ATRA in a concentration- and time-dependent manner. To determine the mechanisms underlying the ATRA-enhanced immune response against bacterial flagellin despite the reduced cell surface expression of TLR5 in ATRA-treated THP-1, we examined the cell surface expression of CD14, which has been proposed to be a TLR co-receptor that enhances the response to microbial components. The cell surface expression of CD14 was significantly enhanced by ATRA treatment, especially in the presence of flagellin. Anti-CD14 antibody treatment prior to ATRA and flagellin treatments completely abolished ATRA-enhanced TNF-α and IL-1β production. Our results suggest that ATRA enhances flagellin-stimulated proinflammatory responses in human monocyte THP-1 cells by upregulating CD14 in a RAR/RXR-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document