scholarly journals Waste fiber-based cellulose supported polymer ligands for toxic metals removal from industrial wastewater

2020 ◽  
Author(s):  
Md Lutfor Rahman ◽  
Choong Jian Fui ◽  
Tang Xin Ting ◽  
Mohd Sani Sarjadi ◽  
Sazmal Effendi Arshad ◽  
...  
Author(s):  
Rakesh Shrestha ◽  
Sagar Ban ◽  
Sijan Devkota ◽  
Sudip Sharma ◽  
Rajendra Joshi ◽  
...  

2021 ◽  
Vol 295 ◽  
pp. 113147
Author(s):  
G. Pooja ◽  
P. Senthil Kumar ◽  
G. Prasannamedha ◽  
Sunita Varjani ◽  
Dai-Viet N. Vo

1993 ◽  
Vol 27 (10) ◽  
pp. 83-93 ◽  
Author(s):  
A. I. Zouboulis ◽  
K. A. Kydros ◽  
K. A. Matis

Nowadays the problem of industrial wastes handling and disposal is increasing continuously, as more strict environmental considerations have to be taken into account. In this paper, selected experimental results are presented from our current research in toxic metals removal (e.g. Cu, Pb, As), related to the applications of mineral particles as by-products (red mud, pyrite, dolomite, etc.) for the induced removal of toxic metals from aqueous solutions. These by-products, existing in finely divided form and considered rather as solid industrial wastes, have been used as a cheap solid adsorbent or substrate. Appropriate methods for the subsequent solid/liquid separation were examined, among them flotation. Different parameters were tested and high removals of toxic metals were achieved. In this way, a useful application may be realized for the waste mineral particles.


2013 ◽  
Vol 91 (1) ◽  
pp. 322-332 ◽  
Author(s):  
Abu Zayed M. Badruddoza ◽  
Zayed Bin Zakir Shawon ◽  
Wei Jin Daniel Tay ◽  
Kus Hidajat ◽  
Mohammad Shahab Uddin

2021 ◽  
Author(s):  
Lekan Taofeek Popoola ◽  
Alhaji Shehu Grema

Effluents from essential industries have been characterized with heavy metals which are non-biodegradable in nature and also detrimental to health when accumulated in body tissues over long exposure. Adsorption was proved as the best efficient process amongst others to remove these heavy metals from industrial wastewater due to its excellent features. Activated carbons from nanoparticles of agricultural wastes such as pods, shells, husks, peels, shafts and many prepared via calcination process at high temperature can be used as active adsorbent for the industrial wastewater treatment involving heavy metals removal. This chapter discusses heavy metals in industrial wastewater effluents and potential agro wastes from which nanoparticles of activated carbon for industrial wastewater purification could be generated. The transformation of agro wastes nanoparticles into activated carbons via calcination and their applications for heavy metals removal from industrial wastewater via adsorption were examined. Various characterization techniques to study the effects of calcination on structural, morphological and textural properties of activated carbon prepared from agro waste nanoparticles were also discussed. Various isotherm, kinetics, mechanistic and thermodynamics models to investigate the adsorptive nature of the process were presented. Error functions and algorithms for both the linear and non-linear isotherm models regression to affirm their fitness for prediction were presented. Lastly, proposed adsorption mechanisms of heavy metals removal from industrial wastewater using activated carbons from nanoparticles of agro wastes were presented.


2020 ◽  
Vol 38 ◽  
pp. 100308
Author(s):  
Wanqi Zhang ◽  
Huaqiong Duo ◽  
Shujing Li ◽  
Yuhong An ◽  
Zhangjing Chen ◽  
...  

2009 ◽  
Vol 36 (4) ◽  
pp. 709-719 ◽  
Author(s):  
Siranee Sreesai ◽  
Suthipong Sthiannopkao

Utilization of zeolite industrial wastewater as a sorbent and (or) precipitant to remove Cu and Zn from copper-brass pipe industrial wastewater was conducted. These wastewaters were sampled and values for pH, temperature, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total solids (TS), total dissolved solids (TDS), total suspended solids (TSS), and heavy metals were determined. In addition, the sorption isotherms of Cu and Zn in copper-brass pipe industrial wastewater onto solids of zeolite industrial wastewater at various dilutions of copper-brass pipe industrial wastewater were explored. The relationship between Cu and Zn concentrations and their removal efficiencies under different conditions of wastewater pH, contact times, and ratios between copper-brass pipe industrial wastewater and zeolite industrial wastewater was examined. Zeolite industrial wastewater contained various carbonate compounds that contributed to high pH and TDS values, and low heavy metals contamination whereas copper-brass pipe industrial wastewater had a low pH value and was contaminated with heavy metals, especially Cu and Zn. Application of zeolite industrial wastewater significantly increased the pH of copper-brass pipe industrial wastewater and consequently removed Cu and Zn. The increase in pH of the wastewater mixture significantly enhanced the heavy metals removal. The Langmuir equation described sorption isotherms of Cu and Zn onto solids of zeolite industrial wastewater at neutral pH (6–7) while the Freundlich equation fitted well at pH > 12. The maximum Cu (97%–98%) and Zn (92%–96%) removal efficiencies occurred at the original pH 12.8 of zeolite industrial wastewater, at the ratio of copper-brass pipe industrial wastewater to zeolite industrial wastewater 3:1 (vol.:vol.) and at 30 min contact time.


Sign in / Sign up

Export Citation Format

Share Document