scholarly journals Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 272
Author(s):  
Doojin Lee ◽  
Amy Q. Shen

Droplet microfluidics provides a versatile tool for measuring interfacial tensions between two immiscible fluids owing to its abilities of fast response, enhanced throughput, portability and easy manipulations of fluid compositions, comparing to conventional techniques. Purely homogeneous extension in the microfluidic device is desirable to measure the interfacial tension because the flow field enables symmetric droplet deformation along the outflow direction. To do so, we designed a microfluidic device consisting of a droplet production region to first generate emulsion droplets at a flow-focusing area. The droplets are then trapped at a stagnation point in the cross junction area, subsequently being stretched along the outflow direction under the extensional flow. These droplets in the device are either confined or unconfined in the channel walls depending on the channel height, which yields different droplet deformations. To calculate the interfacial tension for confined and unconfined droplet cases, quasi-static 2D Darcy approximation model and quasi-static 3D small deformation model are used. For the confined droplet case under the extensional flow, an effective viscosity of the two immiscible fluids, accounting for the viscosity ratio of continuous and dispersed phases, captures the droplet deformation well. However, the 2D model is limited to the case where the droplet is confined in the channel walls and deforms two-dimensionally. For the unconfined droplet case, the 3D model provides more robust estimates than the 2D model. We demonstrate that both 2D and 3D models provide good interfacial tension measurements under quasi-static extensional flows in comparison with the conventional pendant drop method.

2001 ◽  
Vol 436 ◽  
pp. 177-206 ◽  
Author(s):  
KAUSIK SARKAR ◽  
WILLIAM R. SCHOWALTER

The shape of a two-dimensional viscous drop deforming in several time-dependent flow fields, including that due to a potential vortex, has been studied. Vortex flow was approximated by linearizing the induced velocity field at the drop centre, giving rise to an extensional flow with rotating axes of stretching. A generalization of the potential vortex, a flow we have called rotating extensional flow, occurs when the frequency of revolution of the flow is varied independently of the shear rate. Drops subjected to this forcing flow exhibit an interesting resonance phenomenon. Finally we have studied drop deformation in an oscillatory extensional flow.Calculations were performed at small but non-zero Reynolds numbers using an ADI front-tracking/finite difference method. We investigate the effects of interfacial tension, periodicity, viscosity ratio, and Reynolds number on the drop dynamics. The simulation reveals interesting behaviour for steady stretching flows, as well as time-dependent flows. For a steady extensional flow, the drop deformation is found to be non-monotonic with time in its approach to an equilibrium value. At sufficiently high Reynolds numbers, the drop experiences multiple growth–collapse cycles, with possible axes reversal, before reaching a final shape. For a vortex flow, the long-time deformation reaches a steady value, and the drop attains a revolving steady elliptic shape. For rotating extensional flows as well as oscillatory extensional flows, the maximum value of deformation displays resonance with variation in parameters, first increasing and then decreasing with increasing interfacial tension or forcing frequency. A simple ODE model with proper forcing is offered to explain the observed phenomena.


2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1764
Author(s):  
Donghai Yang ◽  
Huayao Sun ◽  
Qing Chang ◽  
Yongxiang Sun ◽  
Limin He

Nano-fluid flooding is a new method capable of improving oil recovery; however, nanoparticles (NPs) significantly affect electric dehydration, which has rarely been investigated. The effect of silica (SiO2) NPs on the droplet–interface coalescence was investigated using a high-speed digital camera under an electric field. The droplet experienced a fall, coalescence, and secondary droplet formation. The results revealed that the oil–water interfacial tension and water conductivity changed because of the SiO2 NPs. The decrease of interfacial tension facilitated droplet deformation during the falling process. However, with the increase of particle concentration, the formed particle film inhibited the droplet deformation degree. Droplet and interface are connected by a liquid bridge during coalescence, and the NP concentration also resulted in the shape of this liquid bridge changing. The increase of NP concentration inhibited the horizontal contraction of the liquid bridge while promoting vertical collapse. As a result, it did not facilitate secondary droplet formation. Moreover, the droplet falling velocity decreased, while the rising velocity of the secondary droplet increased. Additionally, the inverse calculation of the force balance equation showed that the charge of the secondary droplet also increased. This is attributed to nanoparticle accumulation, which resulted in charge accumulation on the top of the droplet.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 662
Author(s):  
Nikita A. Filatov ◽  
Anatoly A. Evstrapov ◽  
Anton S. Bukatin

Droplet microfluidics is an extremely useful and powerful tool for industrial, environmental, and biotechnological applications, due to advantages such as the small volume of reagents required, ultrahigh-throughput, precise control, and independent manipulations of each droplet. For the generation of monodisperse water-in-oil droplets, usually T-junction and flow-focusing microfluidic devices connected to syringe pumps or pressure controllers are used. Here, we investigated droplet-generation regimes in a flow-focusing microfluidic device induced by the negative pressure in the outlet reservoir, generated by a low-cost mini diaphragm vacuum pump. During the study, we compared two ways of adjusting the negative pressure using a compact electro-pneumatic regulator and a manual airflow control valve. The results showed that both types of regulators are suitable for the stable generation of monodisperse droplets for at least 4 h, with variations in diameter less than 1 µm. Droplet diameters at high levels of negative pressure were mainly determined by the hydrodynamic resistances of the inlet microchannels, although the absolute pressure value defined the generation frequency; however, the electro-pneumatic regulator is preferable and convenient for the accurate control of the pressure by an external electric signal, providing more stable pressure, and a wide range of droplet diameters and generation frequencies. The method of droplet generation suggested here is a simple, stable, reliable, and portable way of high-throughput production of relatively large volumes of monodisperse emulsions for biomedical applications.


2021 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Piotr Pawliszak ◽  
Bronwyn H. Bradshaw-Hajek ◽  
Christopher Greet ◽  
William Skinner ◽  
David A. Beattie ◽  
...  

Currently there are no available methods for in-line measurement of gas-liquid interfacial tension during the flotation process. Microfluidic devices have the potential to be deployed in such settings to allow for a rapid in-line determination of the interfacial tension, and hence provide information on frother concentration. This paper presents the development of a simple method for interfacial tension determination based on a microfluidic device with a flow-focusing geometry. The bubble generation frequency in such a microfluidic device is correlated with the concentration of two flotation frothers (characterized by very different adsorption kinetic behavior). The results are compared with the equilibrium interfacial tension values determined using classical profile analysis tensiometry.


2019 ◽  
Vol 1089 ◽  
pp. 108-114 ◽  
Author(s):  
Daniel G. Horvath ◽  
Samuel Braza ◽  
Trevor Moore ◽  
Ching W. Pan ◽  
Lailai Zhu ◽  
...  

Author(s):  
David S. Whyte ◽  
Steven Carnie ◽  
Malcolm Davidson

A numerical study of droplet deformation in a high-pressure homogeniser is presented. This work is an attempt to identify flow criteria responsible for droplet break-up in a homogeniser used to produce dispersions for the manufacture of photographic paper. The main goal of this study is to recommend changes to homogeniser flow & geometry, operating conditions or fluid properties that will enhance droplet break-up. Laminar elongation, turbulent stresses within the orifice and downstream turbulence and cavitation have been suggested as possible mechanisms within the homogeniser for droplet rupture. Results for simulations, using a combination of homogeniser and droplet scale computation indicate that droplets are unaffected by local extensional flow or turbulent fluctuations and that other mechanisms must be responsible for droplet break-up.


RSC Advances ◽  
2014 ◽  
Vol 4 (73) ◽  
pp. 38542-38550 ◽  
Author(s):  
Eric Brouzes ◽  
April Carniol ◽  
Tomasz Bakowski ◽  
Helmut H. Strey

We present the design of a microfluidic device that accurately and automatically pools and delivers a precise number of droplets. It will permit the interfacing of the microfluidic world to the macrofluidic world (e.g. microtiter plates) and will allow the seamless integration of droplet microfluidics into already developed robotic workflows.


Sign in / Sign up

Export Citation Format

Share Document