scholarly journals Life Cycle Assessment of Solid Recovered Fuel Gasification in the State of Qatar

2021 ◽  
Vol 5 (4) ◽  
pp. 81
Author(s):  
Ahmad Mohamed S. H. Al-Moftah ◽  
Richard Marsh ◽  
Julian Steer

Gas products from gasified solid recovered fuel (SRF) have been proposed as a replacement for natural gas to produce electricity in future power generation systems. In this work, the life cycle assessment (LCA) of SRF air gasification to energy was conducted using the Recipe2016 model considering five environmental impact categories and four scenarios in Qatar. The current situation of municipal solid waste (MSW) handling in Qatar is landfill with composting. The results show that using SRF gasification can reduce the environmental impact of MSW landfills and reliance on natural gas in electricity generation. Using SRF gasification on the selected five environmental impact categories—climate change, terrestrial acidification, marine ecotoxicity, water depletion and fossil resource depletion—returned significant reductions in environmental degradation. The LCA of the SRF gasification for the main four categories in the four scenarios gave varying results. The introduction of the SRF gasification reduced climate change-causing emissions by 41.3% because of production of renewable electricity. A reduction in water depletion and fossil resource depletion of 100 times were achieved. However, the use of solar technology and SRF gasification to generate electricity reduced the impact of climate change to almost zero emissions. Terrestrial acidification showed little to no change in all three scenarios investigated. This study was compared with the previous work from the literature and showed that on a nominal 10 kg MSW processing basis, 5 kg CO2 equivalent emissions were produced for the landfilling scenarios. While the previous studies reported that 8 kg CO2 produced per 10 kg MSW is processed for the same scenario. The findings indicate that introducing SRF gasification in solid waste management and electricity generation in Qatar has the potential to reduce greenhouse gas (GHG) emission load and related social, economic, political and environmental costs. In addition, the adoption of the SRF gasification in the country will contribute to Qatar’s national vision 2030 by reducing landfills and produce sustainable energy.

2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Anna Elisabeth Gnielka ◽  
Christof Menzel

AbstractEvery consumer’s decision has an impact on the environment, and even basic food products such as pasta have an impact due to their high consumption rates. Factors that can be influenced by the consumer include the preparation (cooking), last mile and packaging phases. The last mile has not been considered in most studies but contributes considerably to the environmental impact of pasta. The three phases and their environmental impact on the life cycle of pasta are analyzed in this cradle-to-grave life cycle assessment. The focus of the study lies on the impact categories climate change, agricultural land occupation, fossil depletion, water depletion, freshwater eutrophication and freshwater ecotoxicity. Inventory data were taken from other studies, were collected in cooperation with a zero-packaging organic grocery store in Germany or were gained in test series. Our results show that the preparation of pasta has the greatest environmental impact (over 40% in the impact categories climate change and fossil depletion and over 50% in the impact category freshwater eutrophication), followed by the last mile (over 20% in the impact categories climate change and fossil depletion) and lastly the packaging (nearly 9% in the impact categories freshwater eutrophication and freshwater ecotoxicity). Based on our study´s results, we provide some recommendations for minimizing the environmental impacts of pasta.


Fibers ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 59 ◽  
Author(s):  
Catarina Brazão Farinha ◽  
José Dinis Silvestre ◽  
Jorge de Brito ◽  
Maria do Rosário Veiga

The production of waste is increasing yearly and, without a viable recycle or reutilization solution, waste is sent to landfills, where it can take thousand to years to degrade. Simultaneously, for the production of new materials, some industries continue to ignore the potential of wastes and keep on using natural resources for production. The incorporation of waste materials in mortars is a possible solution to avoid landfilling, through their recycling or reutilization. However, no evaluation of their “sustainability” in terms of environmental performance is available in the literature. In this sense, in this research a life cycle assessment was performed on mortars, namely renders, with incorporation of industrials wastes replacing sand and/or cement. For that purpose, eight environmental impact categories (abiotic depletion potential, global warming potential, ozone depletion potential, photochemical ozone creation potential, acidification potential, eutrophication potential, use of non-renewable primary energy resources, and use of renewable primary energy resources) within a “cradle to gate” boundary were analyzed for 19 mortars with incorporation of several industrial wastes: sanitary ware, glass fiber reinforced polymer, forest biomass ashes, and textile fibers. Sixteen out of the 19 mortars under analysis presented, in all environmental impact categories, an equal or better environment performance than a common mortar (used as a reference). The benefits in some environmental impacts were over 20%.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2588 ◽  
Author(s):  
Peter Ylmén ◽  
Diego Peñaloza ◽  
Kristina Mjörnell

Life cycle assessment (LCA) is an established method to assess the various environmental impacts associated with all the stages of a building. The goal of this project was to calculate the environmental releases for a whole office building and investigate the contribution in terms of environmental impact for different parts of the building, as well as the impact from different stages of the life cycle. The construction process was followed up during production and the contractors provided real-time data on the input required in terms of building products, transport, machinery, energy use, etc. The results are presented for five environmental impact categories and, as expected, materials that constitute the main mass of the building and the energy used during operation contribute the largest share of environmental impact. It is usually difficult to evaluate the environmental impact of the materials in technical installations due to the lack of data. However, in this study, the data were provided by the contractors directly involved in the construction and can, therefore, be considered highly reliable. The results show that materials for installations have a significant environmental impact for four of the environmental impact categories studied, which is a noteworthy finding.


2014 ◽  
Vol 599 ◽  
pp. 66-69
Author(s):  
Li Li Zhao ◽  
Yu Liu ◽  
Zhi Hong Wang ◽  
Jia Ping Cui ◽  
Quan Jiang ◽  
...  

The environmental impact of lightweight aggregate concrete block, which use fly ash ceramic, was analyzed. The results show that AP and GWP are the most significant environmental impact categories accounting for 30% and 25% of the total environmental impact respectively. The results also show that, in different life cycle phases, the environmental load of the lightweight aggregate concrete block is mainly caused by the production of cement, which accounts for 42% of the total environmental impact.


2019 ◽  
Vol 12 ◽  
pp. 03016 ◽  
Author(s):  
A.E. Valero ◽  
J.A. Howarter ◽  
J.W. Sutherland

Sustainable practices have become accepted by a large part of the wine community as a necessary step to face climate change challenges and natural resources depletion. Also, in recent years, there is a rising influence of sustainability on consumer’s buying decision. However, buyers fail to distinguish sustainable attributes from wine that is promoted under different sustainability labels. Moreover, wineries find it challenging to quantify the improvement of their environmental impact when following a specific sustainable practice. The objective of this study is to evaluate the methodology for the development of a Sustainable Wine Scoring System (SWSS). The SWSS aims to be a single numeric index of the sustainable attribute of a bottle of wine, constituted by multiple normalized indicators. Our initial approach for the SWSS is to quantify different environmental impact categories following a Life Cycle Assessment (LCA), to then normalizes and weighs the result regarding a reference region. We used as a case of study “Craft Wineries” in Indiana in the USA, as a non-traditional winemaking area. The impact assessment was conducted using SimaPro8.5 in accordance to TRACI2.1 for the USA. As result of our LCA, grape growing is the process that contributes the most to the ecotoxicity, non-carcinogenic, and eutrophication impact categories, while transportation stages contribute the most to global warming potential, smog, and ozone depletion. The calculated SWSS results vary from 279 for the scenario with the highest environmental impact to 350 for the best performance scenario. The SWSS has the potential to represent sustainable attributes of wine in a more suitable way than a single isolated indicator such as carbon footprint.


2020 ◽  
Vol 12 (19) ◽  
pp. 8096
Author(s):  
Won-Jun Park ◽  
Rakhyun Kim ◽  
Seungjun Roh ◽  
Hoki Ban

The purpose of this study was to identify the major wastes generated during the construction phase using a life cycle assessment. To accomplish this, the amount of waste generated in the construction phase was deduced using the loss rate and weight conversions. Major construction wastes were assessed using six comprehensive environmental impact categories, including global warming potential, abiotic depletion potential, acidification potential, eutrophication potential, ozone depletion potential, and photochemical ozone creation potential. According to the analysis results, five main construction wastes—concrete, rebar, cement, polystyrene panel, and concrete block—comprehensively satisfied the 95% cutoff criteria for all six environmental impact categories. The results of the environmental impact characterization assessment revealed that concrete, concrete block, and cement waste accounted for over 70% of the contribution level in all the environmental impact categories except resource depletion. Insulation materials accounted for 1% of the total waste generated but were identified by the environmental impact assessment to have the highest contribution level.


OENO One ◽  
2016 ◽  
Vol 50 (2) ◽  
Author(s):  
Anthony Rouault ◽  
Sandra Beauchet ◽  
Christel Renaud-Gentie ◽  
Frédérique Jourjon

<p style="text-align: justify;"><strong>Aims</strong>: Using Life Cycle Assessment (LCA), this study aims to compare the environmental impacts of two different viticultural technical management routes (TMRs); integrated and organic) and to identify the operations that contribute the most to the impacts.</p><p style="text-align: justify;"><strong>Methods and results</strong>: LCA impact scores were expressed in two functional units: 1 ha of cultivated area and 1 kg of collected grape. We studied all operations from field preparation before planting to the end-of-life of the vine. Inputs and outputs were transformed into potential environmental impacts thanks to SALCA™ (V1.02) and USETox™ (V1.03) methods. Plant protection treatments were a major cause of impact for both TMRs for fuel-related impact categories. For both TMRs, the main contributors to natural resource depletion and freshwater ecotoxicity were trellis system installation and background heavy metal emissions, respectively.</p><p style="text-align: justify;"><strong>Conclusion</strong>: This study shows that the studied organic TMR has higher impact scores than the integrated TMR for all the chosen impact categories except eutrophication. However, the chosen TMRs are only typical of integrated and organic viticulture in Loire Valley and some emission models (heavy metal, fuel-related emissions, and nitrogen emissions) have to be improved in order to better assess the environmental impacts of viticulture. Soil quality should also be integrated to LCA results in viticulture because this lack may be a disadvantage for organic viticulture.</p><strong>Significance and impact of study</strong>: This study is among the first to compare LCA results of an integrated and an organic TMR.


Sign in / Sign up

Export Citation Format

Share Document