scholarly journals Hydrogen Sensing Properties of Co-Doped ZnO Nanoparticles

Chemosensors ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 61 ◽  
Author(s):  
Fatemeh Moosavi ◽  
Mohammad Ebrahim Bahrololoom ◽  
Ramin Kamjou ◽  
Ali Mirzaei ◽  
Salvatore Gianluca Leonardi ◽  
...  

In this study, the gas sensing properties of Co-doped ZnO nanoparticles (Co-ZnO NPs) synthesized via a simple sol-gel method are reported. The microstructure and morphology of the synthesized Co-ZnO NPs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. Co-ZnO NPs were then used for developing a conductometric gas sensor for the detection, at mild temperature, of low concentration of hydrogen (H2) in air. To evaluate the selectivity of the sensor, the sensing behavior toward some VOCs such as ethanol and acetone, which represent the most important interferents for breath hydrogen analysis, was also investigated in detail. Results reported demonstrated better selectivity toward hydrogen of the Co-ZnO NPs sensor when compared to pure ZnO. The main factors contributing to this behavior, i.e., the transition from n-type behavior of pristine ZnO to p-type behavior upon Co-doping, the modification of oxygen vacancies and acid-base characteristics have been considered. Hence, this study highlights the importance of Co doping of ZnO to realize a high performance breath hydrogen sensor.

2019 ◽  
Vol 97 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Ye Zhao ◽  
Fan Tong ◽  
Mao Hua Wang

Pure and cobalt-doped ZnO nanoparticles (2.5, 5, 7.5, and 10 atom % Co) are synthesized by sol–gel method. The as-synthesized nanoparticles are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM) analysis. The nanoparticles of 0, 2.5, and 5 atom % Co-doped ZnO exhibited hexagonal wurtzite structure and have no other phases. Moreover, the (101) diffraction peaks position of Co-doped ZnO shift toward a smaller value of diffraction angle compared with pure ZnO powders. The results confirm that Co ions were well incorporated into ZnO crystal lattice. Simultaneously, Co doping also inhibited the growth of particles, and the crystallite size decreased from 43.11 nm to 36.63 nm with the increase in doping concentration from 0 to 10 atom %. The values of the optical band gap of all Co-doped ZnO nanoparticles gradually decreased from 3.09 eV to 2.66 eV with increasing Co content. Particular, the dielectric constant of all Co-doped ZnO ceramics gradually increased from 1.62 × 103 to 20.52 × 103, and the dielectric loss decreased from 2.36 to 1.28 when Co content increased from 0 to 10 atom %.


Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 300
Author(s):  
Soumaya Jaballah ◽  
Yazeed Alaskar ◽  
Ibrahim AlShunaifi ◽  
Imed Ghiloufi ◽  
Giovanni Neri ◽  
...  

In this work, the main objective is to enhance the gas sensing capability through investigating the effect of Al and Mg doping on ZnO based sensors. ZnO, Mg1% doped ZnO, Al5% doped ZnO and (Al5%, Mg1%) co-doped ZnO nanoparticles (NPs) were synthesized by a modified sol-gel method. The structural characterization showed the hexagonal crystalline structure of the prepared samples. Morphological characterizations confirmed the nanometric sizes of the NPs (27–57 nm) and elemental composition investigation proved the existence of Al and Mg with low concentrations. The optical characterization showed the high absorbance of the synthesized samples in the UV range. The gas sensing performances of the synthesized samples, prepared in the form of thick films, were investigated. Sensing tests demonstrated the high influence of the Al and Mg on the sensing performances towards H2 and CO gas, respectively. The 5A1MZO-based sensor exhibits high sensitivity and low detection limits to H2 (<2 ppm) and CO (<1 ppm). It showed a response around 70 (at 250 °C) towards 2000 ppm H2 and 2 (at 250 °C) towards CO.


Optik ◽  
2019 ◽  
Vol 192 ◽  
pp. 162942 ◽  
Author(s):  
Long Huang ◽  
Yihua Sun ◽  
Mingbo Li ◽  
Yasha Yi ◽  
Lihua Jiang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gebretinsae Yeabyo Nigussie ◽  
Gebrekidan Mebrahtu Tesfamariam ◽  
Berhanu Menasbo Tegegne ◽  
Yemane Araya Weldemichel ◽  
Tesfakiros Woldu Gebreab ◽  
...  

We report in this paper antibacterial activity of Ag-doped TiO2 and Ag-doped ZnO nanoparticles (NPs) under visible light irradiation synthesized by using a sol-gel method. Structural, morphological, and basic optical properties of these samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectrum, and UV-Vis reflectance. Room temperature X-ray diffraction analysis revealed that Ag-doped TiO2 has both rutile and anatase phases, but TiO2 NPs only have the anatase phase. In both ZnO and Ag-doped ZnO NPs, the hexagonal wurtzite structure was observed. The morphologies of TiO2 and ZnO were influenced by doping with Ag, as shown from the SEM images. EDX confirms that the samples are composed of Zn, Ti, Ag, and O elements. UV-Vis reflectance results show decreased band gap energy of Ag-doped TiO2 and Ag-doped ZnO NPs in comparison to that of TiO2 and ZnO. Pathogenic bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, were used to assess the antibacterial activity of the synthesized materials. The reduction in the viability of all the three bacteria to zero using Ag-doped ZnO occurred at 60 μg/mL of culture, while Ag-doped TiO2 showed zero viability at 80 μg/mL. Doping of Ag on ZnO and TiO2 plays a vital role in the increased antibacterial activity performance.


Sign in / Sign up

Export Citation Format

Share Document