scholarly journals Compact Miniaturized Bioluminescence Sensor Based on Continuous Air-Segmented Flow for Real-Time Monitoring: Application to Bile Salt Hydrolase (BSH) Activity and ATP Detection in Biological Fluids

Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 122
Author(s):  
Aldo Roda ◽  
Pierpaolo Greco ◽  
Patrizia Simoni ◽  
Valentina Marassi ◽  
Giada Moroni ◽  
...  

A simple and versatile continuous air-segmented flow sensor using immobilized luciferase was designed as a general miniaturized platform based on sensitive biochemiluminescence detection. The device uses miniaturized microperistaltic pumps to deliver flows and compact sensitive light imaging detectors based on BI-CMOS (smartphone camera) or CCD technology. The low-cost components and power supply make it suitable as out-lab device at point of need to monitor kinetic-related processes or ex vivo dynamic events. A nylon6 flat spiral carrying immobilized luciferase was placed in front of the detector in lensless mode using a fiber optic tapered faceplate. ATP was measured in samples collected by microdialysis from rat brain with detecting levels as low as 0.4 fmoles. The same immobilized luciferase was also used for the evaluation of bile salt hydrolase (BSH) activity in intestinal microbiota. An aminoluciferin was conjugatated with chenodeoxycholic acid forming the amide derivative aLuc-CDCA. The hydrolysis of the aLuc-CDCA probe by BSH releases free uncaged aminoluciferin which is the active substrate for luciferase leading to light emission. This method can detect as low as 0.5 mM of aLuc-CDCA, so it can be used on real faecal human samples to study BSH activity and its modulation by diseases and drugs.

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 674
Author(s):  
Jimmy G. Hernández-Gómez ◽  
Argelia López-Bonilla ◽  
Gabriela Trejo-Tapia ◽  
Sandra V. Ávila-Reyes ◽  
Antonio R. Jiménez-Aparicio ◽  
...  

Bile salt hydrolase (BSH) activity in probiotic strains is usually correlated with the ability to lower serum cholesterol levels in hypercholesterolemic patients. The objective of this study was the evaluation of BSH in five probiotic strains of lactic acid bacteria (LAB) and a probiotic yeast. The activity was assessed using a qualitative direct plate test and a quantitative high-performance thin- layer chromatography assay. The six strains differed in their BSH substrate preference and activity. Lactobacillus plantarum DGIA1, a potentially probiotic strain isolated from a double cream cheese from Chiapas, Mexico, showed excellent deconjugation activities in the four tested bile acids (69, 100, 81, and 92% for sodium glycocholate, glycodeoxycholate, taurocholate, and taurodeoxycholate, respectively). In the case of the commercial probiotic yeast Saccharomyces boulardii, the deconjugation activities were good against sodium glycodeoxycholate, taurocholate, and taurodeoxycholate (100, 57, and 63%, respectively). These last two results are part of the novelty of the work. A weak deconjugative activity (5%) was observed in the case of sodium glycocholate. This is the first time that the BSH activity has been detected in this yeast.


2008 ◽  
Vol 74 (15) ◽  
pp. 4719-4726 ◽  
Author(s):  
Jolanda M. Lambert ◽  
Roger S. Bongers ◽  
Willem M. de Vos ◽  
Michiel Kleerebezem

ABSTRACT Bile salts play an important role in the digestion of lipids in vertebrates and are synthesized and conjugated to either glycine or taurine in the liver. Following secretion of bile salts into the small intestine, intestinal microbes are capable of deconjugating the glycine or taurine from the bile salts, using an enzyme called bile salt hydrolase (Bsh). Intestinal lactobacilli are regarded as major contributors to bile salt hydrolysis in vivo. Since the bile salt-hydrolyzing strain Lactobacillus plantarum WCFS1 was predicted to carry four bsh genes (bsh1, bsh2, bsh3, and bsh4), the functionality of these bsh genes was explored using Lactococcus lactis heterologous overexpression and multiple bsh deletion strains. Thus, Bsh1 was shown to be responsible for the majority of Bsh activity in L. plantarum WCFS1. In addition, bsh1 of L. plantarum WCFS1 was shown to be involved in conferring tolerance to specific bile salts (i.e., glycocholic acid). Northern blot analysis established that bsh1, bsh2, bsh3, and bsh4 are all expressed in L. plantarum WCFS1 during the exponential growth phase. Following biodiversity analysis, bsh1 appeared to be the only bsh homologue that was variable among L. plantarum strains; furthermore, the presence of bsh1 correlated with the presence of Bsh activity, suggesting that Bsh1 is commonly responsible for Bsh activity in L. plantarum strains. The fact that bsh2, bsh3, and bsh4 genes appeared to be conserved among L. plantarum strains suggests an important role of these genes in the physiology and lifestyle of the species L. plantarum. Analysis of these additional bsh-like genes in L. plantarum WCFS1 suggests that they might encode penicillin acylase rather than Bsh activity, indicating their implication in the conversion of substrates other than bile acids in the natural habitat.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Cheng-Chih Tsai ◽  
Pei-Pei Lin ◽  
You-Miin Hsieh ◽  
Zi-yi Zhang ◽  
Hui-Ching Wu ◽  
...  

This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probioticsin vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities ofPediococcus acidilacticiNBHK002,Bifidobacterium adolescentisNBHK006,Lactobacillus rhamnosusNBHK007, andLactobacillus acidophilusNBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease.


2021 ◽  
Vol 9 (5) ◽  
pp. 1011
Author(s):  
Hiroyuki Kusada ◽  
Kana Morinaga ◽  
Hideyuki Tamaki

Lactobacillus gasseri is one of the most likely probiotic candidates among many Lactobacillus species. Although bile salt resistance has been defined as an important criterion for selection of probiotic candidates since it allows probiotic bacteria to survive in the gut, both its capability and its related enzyme, bile salt hydrolase (BSH), in L. gasseri is still largely unknown. Here, we report that the well-known probiotic bacterium L. gasseri JCM1131T possesses BSH activity and bile salt resistance capability. Indeed, this strain apparently showed BSH activity on the plate assay and highly tolerated the primary bile salts and even taurine-conjugated secondary bile salt. We further isolated a putative BSH enzyme (LagBSH) from strain JCM1131T and characterized the enzymatic function. The purified LagBSH protein exhibited quite high deconjugation activity for taurocholic acid and taurochenodeoxycholic acid. The lagBSH gene was constitutively expressed in strain JCM1131T, suggesting that LagBSH likely contributes to bile salt resistance of the strain and may be associated with survival capability of strain JCM1131T within the human intestine by bile detoxification. Thus, this study first demonstrated the bile salt resistance and its responsible enzyme (BSH) activity in strain JCM1131T, which further supports the importance of the typical lactic acid bacterium as probiotics.


2019 ◽  
Author(s):  
Yashpal Yadav ◽  
Mrityunjay K. Tiwari ◽  
Deepak Chand ◽  
Debjoyati Boral ◽  
Archana Pundle ◽  
...  

AbstractBile Salt Hydrolases (BSHs) are enzymes from enteric bacteria that catalyze the hydrolysis of Bile Acids and consequently promote the reduction of cholesterol level in the mammalian body. Out of several reported BSHs, the Enterococcus faecalis BSH (EfBSH) has been reported to have the highest enzymatic activity. Herein, we have investigated the mechanistic details of the EfBSH activity. The study was carried out employing two mutants of EfBSH: E269A and R207A, which shows differential catalytic activity. The mutant E269A exhibits significant loss in the BSH activity with an increased affinity towards the substrate as compared to R207A mutant. Further, R207A was found to be involved in allostery with an increased EfBSH activity towards tauro-conjugated bile acids. The structural and electrostatic force analyses of the active sites of the E269A mutant and the wild type EfBSH (wt EfBSH) revealed that the interaction between Glu21 and Arg207 is the determining factor in maintaining the dynamic allostery and high activity of EfBSH.


2019 ◽  
Author(s):  
Arijit A. Adhikari ◽  
Tom C. Seegar ◽  
Scott B. Ficarro ◽  
Megan D. McCurry ◽  
Deepti Ramachandran ◽  
...  

AbstractBile salt hydrolase (BSH) enzymes are widely expressed by human gut bacteria and catalyze the gateway reaction leading to secondary bile acid formation. Bile acids regulate key metabolic and immune processes by binding to host receptors. There is an unmet need for a potent tool to inhibit BSHs across all gut bacteria in order to study the effects of bile acids on host physiology. Here, we report the development of a covalent pan-inhibitor of gut bacterial BSH. From a rationally designed candidate library, we identified a lead compound bearing an alpha-fluoromethyl ketone warhead that modifies BSH at the catalytic cysteine residue. Strikingly, this inhibitor abolished BSH activity in conventional mouse feces. Mice gavaged with a single dose of this compound displayed decreased BSH activity and decreased deconjugated bile acid levels in feces. Our studies demonstrate the potential of a covalent BSH inhibitor to modulate bile acid composition in vivo.


2021 ◽  
Vol 7 (6) ◽  
pp. eaaz9857
Author(s):  
Pavlo V. Khodakivskyi ◽  
Christian L. Lauber ◽  
Aleksey Yevtodiyenko ◽  
Arkadiy A. Bazhin ◽  
Stephen Bruce ◽  
...  

The microbiome-produced enzyme bile salt hydrolase (BSH) plays a central role in human health, but its function remains unclear due to the lack of suitable methods for measuring its activity. Here, we have developed a novel optical tool based on ultrasensitive bioluminescent imaging and demonstrated that this assay can be used for quick and cost-effective quantification of BSH activity across a broad range of biological settings including pure enzymes and bacteria, intact fecal slurries, and noninvasive imaging in live animals, as well as for the assessment of BSH activity in the entire gastrointestinal tract of mice and humans. Using this assay, we showed that certain types of prebiotics are capable of increasing BSH activity of the gut microbiota in vivo and successfully demonstrated potential application of this assay as a noninvasive diagnostic test to predict the clinical status of inflammatory bowel disease (IBD) patients.


Sign in / Sign up

Export Citation Format

Share Document