scholarly journals Selective Enhancement of SERS Spectral Bands of Salicylic Acid Adsorbate on 2D Ti3C2Tx-Based MXene Film

Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 223
Author(s):  
Sonata Adomavičiūtė-Grabusovė ◽  
Simonas Ramanavičius ◽  
Anton Popov ◽  
Valdas Šablinskas ◽  
Oleksiy Gogotsi ◽  
...  

In this research, we have demonstrated that 2D Ti3C2Xn-based MXene (MXene) films are suitable for the design of surface-enhanced Raman spectroscopy (SERS)-based sensors. The enhanced SERS signal was observed for a salicylic acid molecule on Ti3C2Tx-based MXene film. Confirmation of the adsorption of the salicylic acid molecule and the formation of a salicylic acid–MXene complex were determined by experimental SERS-based spectral observations such as greatly enhanced out-of-plane bending modes of salicylic acid at 896 cm−1 and a band doublet at 681 cm−1 and 654 cm−1. Additionally, some other spectral features indicate the adsorption of salicylic acid on the MXene surface, namely, a redshift of vibrational modes and the disappearance of the carboxyl deformation spectral band at 771 cm−1. The determined enhancement factor indicates the value that can be expected for the chemical enhancement mechanism in SERS of 220 for out-of-plane vibrational modes. Theoretical modeling based on density functional theory (DFT) calculations using B3LYP/6311G++ functional were performed to assess the formation of the salicylic acid/MXene complex. Based on the calculations, salicylic acid displays affinity of forming a chemical bond with titanium atom of Ti3C2(OH)2 crystal via oxygen atom in hydroxyl group of salicylic acid. The electron density redistribution of the salicylic acid–MXene complex leads to a charge transfer effect with 2.2 eV (428 nm) and 2.9 eV (564 nm) excitations. The experimentally evaluated enhancement factor can vary from 220 to 60 when different excitation wavelengths are applied.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jesús N. Pedroza-Montero ◽  
Ignacio L. Garzón ◽  
Huziel E. Sauceda

AbstractThe study of nanostructures’ vibrational properties is at the core of nanoscience research. They are known to represent a fingerprint of the system as well as to hint the underlying nature of chemical bonds. In this work, we focus on addressing how the vibrational density of states (VDOS) of the carbon fullerene family (Cn: n = 20 → 720 atoms) evolves from the molecular to the bulk material (graphene) behavior using density functional theory. We find that the fullerene’s VDOS smoothly converges to the graphene characteristic line-shape, with the only noticeable discrepancy in the frequency range of the out-of-plane optic (ZO) phonon band. From a comparison of both systems we obtain as main results that: (1) The pentagonal faces in the fullerenes impede the existence of the analog of the high frequency graphene’s ZO phonons, (2) which in the context of phonons could be interpreted as a compression (by 43%) of the ZO phonon band by decreasing its maximum allowed radial-optic vibration frequency. And 3) as a result, the deviation of fullerene’s VDOS relative to graphene may hold important thermodynamical implications, such as larger heat capacities compared to graphene at room-temperature. These results provide insights that can be extrapolated to other nanostructures containing pentagonal rings or pentagonal defects.


2005 ◽  
Vol 59 (10) ◽  
pp. 1194-1202 ◽  
Author(s):  
Royce W. Beal ◽  
Thomas B. Brill

The vibrational modes of the –NO2 group in more than fifty energetic compounds containing the C-nitro and N-nitro functionalities were observed and then calculated in optimized structures using density functional theory (B3LYP/6–31+G*). The trends in the symmetric and asymmetric stretches and scissor and out-of-plane deformations were explained by these calculations. A previously unreported correlation was found between the nitro group internal bonding angle and its asymmetric stretching frequency. The concept of meta and ortho/para directing groups was applicable to the trends in coupled motions in the nitroaromatic compounds. Both the scissor motion of C–NO2 groups and the out-of-plane deformation of N–NO2 groups were found to be virtually insensitive to the remainder of the molecule. These findings may be useful in analytical methods of explosive detection based on their infrared (IR) spectra.


2006 ◽  
Vol 45 (5A) ◽  
pp. 4170-4175 ◽  
Author(s):  
Shigeki Saito ◽  
Talgat M. Inerbaev ◽  
Hiroshi Mizuseki ◽  
Nobuaki Igarashi ◽  
Yoshiyuki Kawazoe

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 286
Author(s):  
Valery Davydov ◽  
Evgenii Roginskii ◽  
Yuri Kitaev ◽  
Alexander Smirnov ◽  
Ilya Eliseyev ◽  
...  

We report the results of experimental and theoretical studies of phonon modes in GaN/AlN superlattices (SLs) with a period of several atomic layers, grown by submonolayer digital plasma-assisted molecular-beam epitaxy, which have a great potential for use in quantum and stress engineering. Using detailed group-theoretical analysis, the genesis of the SL vibrational modes from the modes of bulk AlN and GaN crystals is established. Ab initio calculations in the framework of the density functional theory, aimed at studying the phonon states, are performed for SLs with both equal and unequal layer thicknesses. The frequencies of the vibrational modes are calculated, and atomic displacement patterns are obtained. Raman spectra are calculated and compared with the experimental ones. The results of the ab initio calculations are in good agreement with the experimental Raman spectra and the results of the group-theoretical analysis. As a result of comprehensive studies, the correlations between the parameters of acoustic and optical phonons and the structure of SLs are obtained. This opens up new possibilities for the analysis of the structural characteristics of short-period GaN/AlN SLs using Raman spectroscopy. The results obtained can be used to optimize the growth technologies aimed to form structurally perfect short-period GaN/AlN SLs.


2020 ◽  
Vol 35 (2) ◽  
pp. 129-135
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of atazanavir has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Atazanavir crystallizes in space group P21 (#4) with a = 15.33545(7), b = 5.90396(3), c = 21.56949(13) Å, β = 96.2923(4)°, V = 1941.134(11) Å3, and Z = 2. Despite being labeled as “atazanavir sulfate”, the commercial reagent sample consisted of atazanavir free base. The structure consists of an array of extended-conformation molecules parallel to the ac-plane. Although the atazanavir molecule contains only four classical hydrogen bond donors, hydrogen bonding is, surprisingly, important to the crystal energy. Both intra- and intermolecular hydrogen bonds are significant. The hydroxyl group forms bifurcated intramolecular hydrogen bonds to a carbonyl oxygen atom and an amide nitrogen. Several amide nitrogens act as donors to the hydroxyl group and carbonyl oxygen atoms. An amide nitrogen acts as a donor to another amide nitrogen. Several methyl, methylene, methyne, and phenyl hydrogens participate in hydrogen bonds to carbonyl oxygens, an amide nitrogen, and the pyridine nitrogen. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1426.


2019 ◽  
Vol 34 (1) ◽  
pp. 50-58
Author(s):  
James A. Kaduk ◽  
Nicholas C. Boaz ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of oxybutynin hydrochloride hemihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Oxybutynin hydrochloride hemihydrate crystallizes in space group I2/a (#15) with a = 14.57266(8), b = 8.18550(6), c = 37.16842(26) Å, β = 91.8708(4)°, V = 4421.25(7) Å3, and Z = 8. The compound exhibits X-ray-induced photoreduction of the triple bond. Prominent in the layered crystal structure is the N–H⋅⋅⋅Cl hydrogen bond between the cation and anion, as well as O–H⋅⋅⋅Cl hydrogen bonds from the water molecule and hydroxyl group of the oxybutynin cation. C–H⋅⋅⋅Cl hydrogen bonds also contribute to the crystal energy, and help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-068-1305.


2007 ◽  
Vol 443 (4-6) ◽  
pp. 232-236 ◽  
Author(s):  
A.F. Lago ◽  
J.Z. Dávalos ◽  
A. Naves de Brito

2018 ◽  
Vol 34 (1) ◽  
pp. 59-65
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of minocycline hydrochloride dihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Minocycline hydrochloride dihydrate crystallizes in space groupP212121(#19) witha= 7.40772(1),b= 14.44924(3),c= 22.33329(4) Å,V= 2390.465(12) Å3, andZ= 4. The minocycline cation is a zwitterion: both dimethylamino groups are protonated and one hydroxyl group is ionized. A potential ambiguity in the orientation of the amide group was resolved by considering Rietveld refinement residuals and displacement coefficients, as well as DFT energies. The crystal structure is dominated by hydrogen bonds. Both water molecules and a hydroxyl group act as donors to the chloride anion. Both protonated dimethyl amine groups act as donors to the ionized hydroxyl group. Several intramolecular O–H···O hydrogen groups help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1606.


Sign in / Sign up

Export Citation Format

Share Document