scholarly journals Identification of and Associations among Low, Middle, and High Body Composition Trajectories from Age 5- to 17-Years

Children ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 192
Author(s):  
Teresa A. Marshall ◽  
Alexandra M. Curtis ◽  
Joseph E. Cavanaugh ◽  
John J. Warren ◽  
Steven M. Levy

Our objective was to identify sex-specific age 5- to 17-year body composition (body mass index (BMI), % body fat, fat mass index, fat-free mass index) trajectories, compare trajectories assigned using age 5 (AGE5) data to those assigned using all available (ALL) data, and compare BMI assignments to other body composition assignments. Cluster analysis was used to identify low, medium, and high trajectories from body composition measures obtained from dual energy x-ray absorptiometry (DXA) scans at 5, 9, 11, 13, 15, and 17 years in a birth cohort followed longitudinally (n = 469). Moderate agreement was observed for comparisons between AGE5 data and ALL data cluster assignments for each body composition measure. Agreement between cluster assignments for BMI and other body composition measures was stronger using ALL data than using AGE5 data. Our results suggest that BMI, % body fat, fat mass index, and fat free mass index trajectories are established during early childhood, and that BMI is a reasonable predictor of body composition appropriate to track obesity in public health and clinical settings.

2019 ◽  
Vol 4 (2) ◽  
pp. 23 ◽  
Author(s):  
Antonio ◽  
Kenyon ◽  
Ellerbroek ◽  
Carson ◽  
Burgess ◽  
...  

The purpose of this investigation was to compare two different methods of assessing body composition (i.e., a multi-frequency bioelectrical impedance analysis (MF-BIA) and dual-energy x-ray absorptiometry (DXA)) over a four-week treatment period in exercise-trained men and women. Subjects were instructed to reduce their energy intake while maintaining the same exercise regimen for a period of four weeks. Pre and post assessments for body composition (i.e., fat-free mass, fat mass, percent body fat) were determined via the MF-BIA and DXA. On average, subjects reduced their energy intake by ~18 percent. The MF-BIA underestimated fat mass and percentage body fat and overestimated fat-free mass in comparison to the DXA. However, when assessing the change in fat mass, fat-free mass or percent body fat, there were no statistically significant differences between the MF-BIA vs. DXA. Overall, the change in percent body fat using the DXA vs. the MF-BIA was −1.3 ± 0.9 and −1.4 ± 1.8, respectively. Our data suggest that when tracking body composition over a period of four weeks, the MF-BIA may be a viable alternative to the DXA in exercise-trained men and women.


2006 ◽  
Vol 96 (6) ◽  
pp. 1163-1168 ◽  
Author(s):  
Joanne Hosking ◽  
Brad S. Metcalf ◽  
Alison N. Jeffery ◽  
Linda D. Voss ◽  
Terence J. Wilkin

Foot-to-foot bioelectrical impedance analysis (BIA) is simple and non-invasive, making it particularly suitable for use in children. There is insufficient evidence of the validity of foot-to-foot BIA compared with dual-energy X-ray absorptiometry (DEXA) as the criterion method in healthy young children. Our objective was to assess the validity of foot-to-foot BIA against DEXA in a large cohort of healthy young children. Body composition was measured by foot-to-foot BIA and DEXA in 203 children (mean age 8·9 (sd0·3) years). Bland–Altman and simple linear regression analyses were used to determine agreement between methods. BIA overestimated fat-free mass by a mean of 2·4 % in boys and 5·7 % in girls, while fat mass was underestimated by 6·5 % in boys and 10·3 % in girls. The percentage fat recorded by BIA was, accordingly, also lower than by DEXA (boys 4·8 %; girls 12·8 %). In boys, however, there were correlations between the size of the difference between methods and the size of the measure under consideration such that in smaller boys fat-free mass was underestimated (r − 0·57;P < 0·001) while fat mass and percentage fat were overestimated (r0·74 for fat mass;r0·69 for percentage fat; bothP < 0·001) with the reverse in bigger boys. Mean differences between techniques were greater in the girls than in the boys but in boys only, the direction of the differences was dependent upon the size of the child. Therefore, BIA may be useful for large-scale studies but is not interchangeable with DEXA and should be interpreted with caution in individuals.


2021 ◽  
pp. 1-39
Author(s):  
Abbie E. Smith-Ryan ◽  
Gabrielle J. Brewer ◽  
Lacey M. Gould ◽  
Malia N.M. Blue ◽  
Katie R. Hirsch ◽  
...  

Abstract Understanding the effects of acute feeding on body composition and metabolic measures is essential to the translational component and practical application of measurement and clinical use. To investigate the influence of acute feeding on the validity of dual energy x-ray absorptiometry (DXA), a four-compartment model (4C), and indirect calorimetry metabolic outcomes, 39 healthy young adults (n=19 females; age: 21.8± 3.1 yrs, weight; 71.5 ± 10.0 kg) participated in a randomized cross-over study. Subjects were provided one of four randomized meals on separate occasions (high carbohydrate, high protein, ad libitum or fasted baseline) prior to body composition and metabolic assessments. Regardless of macronutrient content, acute feeding increased DXA percent body fat (%fat) for the total sample and females [average constant error (CE):-0.30%; total error (TE): 2.34%), although not significant (p=0.062); the error in males was minimal (CE: 0.11%; TE: 0.86%). DXA fat mass (CE: 0.26 kg; TE: 0.75 kg), lean mass (CE: 0.83 kg; TE: 1.23 kg) were not altered beyond measurement error for the total sample. 4C %fat was significantly impacted from all acute feedings (avg CE: 0.46%; TE: 3.7%). 4C fat mass (CE: 0.71 kg; TE: 3.38 kg) and fat-free mass (CE: 0.55 kg; TE: 3.05 kg) exceeded measurement error for the total sample. Resting metabolic rate was increased for each feeding condition (TE: 398.4 kcal/d). Standard pre-testing fasting guidelines may be important when evaluating DXA and 4C %fat, whereas additional DXA variables (FM, LM) may not be significantly impacted by an acute meal. Measuring body composition via DXA under less stringent pre-testing guidelines may be valid and increase feasibility of testing in clinical settings.


2006 ◽  
Vol 3 (2) ◽  
pp. 200-209 ◽  
Author(s):  
Kate A. Heelan ◽  
Joey C. Eisenmann

Background:It is uncertain as to whether physical activity (PA) may influence the body composition of young children.Purpose:To determine the association between PA, media time, and body composition in children age 4 to 7 y.Methods:100 children (52 girls, 48 boys) were assessed for body-mass index (BMI), body fat, fat mass (FM), and fat-free mass using dual energy x-ray absorbtiometryptiometry (DXA). PA was monitored using accelerometers and media time was reported by parental proxy.Results:In general, correlations were low to moderate at best (r < 0.51), but in the expected direction. Total media time and TV were significantly associated with BMI (r = 0.51, P < 0.05) and FM (r = 0.29 to 0.30, P < 0.05) in girls. In boys, computer usage was significantly associated with FM in boys (r = 0.31, P < 0.05).Conclusion:The relatively low correlations suggest that other factors may influence the complex, multi-factorial body composition phenotype of young children.


2015 ◽  
Vol 47 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Julien Verney ◽  
Chloé Schwartz ◽  
Saliha Amiche ◽  
Bruno Pereira ◽  
David Thivel

AbstractThis study aimed at comparing BIA and DXA results in assessing body composition in young adults depending on their physical activity level. Eighty healthy 19-30 years old subjects were enrolled and their body composition (Fat Mass and Fat-Free Mass) was assessed by dual-energy X-ray absorptiometry (DXA) and by a newly developed Bioelectrical Impedance Analyzer (BIA - Tanita MC780). A seven-day physical activity level was assessed using a 3-axial accelerometer. DXA-FM% and BIA-FM% were correlated (p<0.001; r= 0.852; ICC [IC95%]: 0.84 [0.75 – 0.90]; concordance coefficient: 0.844). DXA-FFM and BIA FFM were correlated (p<0.001; r=0.976; ICC [IC95%]: 0.95 [0.93 – 0.97], concordance coefficient: 0.955). DXA and BIA measurements of FM% and FFM were highly correlated in both boys and girls regardless of the physical activity level. Compared with DXA scans, newly developed bioelectrical impedance analyzers provide satisfactory fat mass and lean mass measures in healthy young women and men, despite their physical activity level.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1422.2-1422
Author(s):  
Y. Gorbunova ◽  
T. Popkova ◽  
T. Panafidina ◽  
N. Demin ◽  
E. Nasonov ◽  
...  

Background:A redistribution of body fat (abdominal obesity) is quite common in RA patients. Such parameters as body mass index (BMI) and waist circumference do not distinguish or quantify fat and lean (muscle) mass. For that purpose, dual-energy X-ray absorptiometry (DXA) is usually used.Objectives:to compare quantitative body composition in patients with early RA at baseline and after 24 weeks of therapy with different regimens.Methods:The study included 37pts (31 women /6 men) with early RA (ACR/EULAR criteria, 2010), 57 [46.5, 62,0] years old, naïve to treatment with glucocorticoids and disease-modifying anti-rheumatics (DMARDs). Pts were seropositive for IgM RF (76%) and anti-CCP (92%), with highly active RA (DAS28 5,5 [5,1; 6,0]; SDAI 32,4 [22,4; 42], CDAI 29,0 [19,7; 39,5]) scores, and median disease duration of 6.0 [5,5;15.5] months. Methotrexate (MTX) 10 [10-15] mg/week subcutaneously was initiated in all included patients as first line therapy for 12 weeks. By this time point therapy was reviewed in 19 patients (51%) due to MTX inefficacy and adalimumab (ADA) at 40 mg once every 2 weeks was added on top of MTX. DXA scan (HOLOGIC, USA) was used to measure body composition at baseline and after 6mths of treatment with the protocol assessing total body, body fat and lean muscle mass.Results:Based on therapeutic regimens at week 24 all study subjects were divided into 2 groups: Group I (n=18) receiving MTX monotherapy, Group II (n=19) – the combination of MTX and ADA (Table 1). Group I patients had lower body weight, lean and fat mass vs patients from Group II (62 kg vs. 73.7 kg; 40.6 kg vs. 49.7 kg; 21.0 kg vs. 25.8 kg, respectively (p<0.05 in all cases) at baseline. 24 weeks of combination therapy eventuated in body weight gain (73.7 kg vs. 75.8 kg), accumulation of fat (25.8 kg vs. 28.1 kg) and unchanged lean tissue mass. In contrast, patients on MTX monotherapy managed to increase their lean mass (40.6 kg vs. 41.6 kg) without gaining in total fat mass.Table 1.IndicesI group (n=18),monotherapy МТII group (n=19),combination therapy (MTX, ADA)baseline24 weeksΔ,%baseline24 weeksΔ,%Body fat mass, kg21,0 [17,2;26,2]**23,4 [17,5;29,7]+1125,8 [18,4;35,0]28,1 [21,4;37,9]*+9Lean mass, kg40,6 [37,3;44,7]**41,6 [38,2;46,4]***/*+2,549,7 [39,0;56,1]49,9 [41,0;57,6]0,4Total mass, kg62,0 [57,7;77,6]**64,1 [59,5;81,6]***+3,473,7 [64,5;97,9]75,8 [66,8;102,1]*+2,8*p<0,05 reliability of differences in parameters before treatment and after 6mth (Wilcoxon); **p<0.05 differences in baseline values in groups I and II (Mann-Whitney test);***p<0.05 difference in the indices between the groups by the 6mth of therapy; Δ,% difference in indices between the groups by the 6mth of therapy.Conclusion:In general, RA patients on treatment tend to gain weight by week 24. Patients who failed on MTX monotherapy by week 24 and were switched to combination therapy had higher fat mass at baseline. Mediations used for RA treatment produce multidirectional effects on quantitative parameters of body composition: MTX monotherapy triggers some increase of lean mass, while combination of MTX and bDMARD results in weight gain and increase of total and fat mass. These data need to be confirmed in large-scale studies with longer follow-up period.Disclosure of Interests:None declared


2019 ◽  
Vol 121 (6) ◽  
pp. 688-698 ◽  
Author(s):  
Jutta K. H. Skau ◽  
Benedikte Grenov ◽  
Chhoun Chamnan ◽  
Mary Chea ◽  
Frank T. Wieringa ◽  
...  

AbstractThe study aimed at assessing stunting, wasting and breast-feeding as correlates of body composition in Cambodian children. As part of a nutrition trial (ISRCTN19918531), fat mass (FM) and fat-free mass (FFM) were measured using2H dilution at 6 and 15 months of age. Of 419 infants enrolled, 98 % were breastfed, 15 % stunted and 4 % wasted at 6 months. At 15 months, 78 % were breastfed, 24 % stunted and 11 % wasted. Those not breastfed had lower FMI at 6 months but not at 15 months. Stunted children had lower FM at 6 months and lower FFM at 6 and 15 months compared with children with length-for-agez≥0. Stunting was not associated with height-adjusted indexes fat mass index (FMI) or fat-free mass index (FFMI). Wasted children had lower FM, FFM, FMI and FFMI at 6 and 15 months compared with children with weight-for-lengthz(WLZ) ≥0. Generally, FFM and FFMI deficits increased with age, whereas FM and FMI deficits decreased, reflecting interactions between age and WLZ. For example, the FFM deficits were –0·99 (95 % CI –1·26, –0·72) kg at 6 months and –1·44 (95 % CI –1·69; –1·19) kg at 15 months (interaction,P<0·05), while the FMI deficits were –2·12 (95 % CI –2·53, –1·72) kg/m2at 6 months and –1·32 (95 % CI –1·77, –0·87) kg/m2at 15 months (interaction,P<0·05). This indicates that undernourished children preserve body fat at the detriment of fat-free tissue, which may have long-term consequences for health and working capacity.


2011 ◽  
Vol 23 (5) ◽  
pp. 219-223 ◽  
Author(s):  
Lana J. Williams ◽  
Julie A. Pasco ◽  
Felice N. Jacka ◽  
Margaret J. Henry ◽  
Seetal Dodd ◽  
...  

Williams LJ, Pasco JA, Jacka FN, Henry MJ, Dodd S, Nicholson GC, Kotowicz MA, Berk M. Bipolar disorder and adiposity: a study using whole body dual energy X-ray absorptiometry scans.Objective:Previous research has demonstrated a relationship between adiposity and bipolar disorder, although data are derived predominantly from patient samples and use indirect methods of assessing adiposity. This study investigated the association between bipolar disorder and several indices of adiposity, including body fat mass as measured by dual energy X-ray absorptiometry (DXA), in a community-based sample.Methods:In this study, 21 women with bipolar disorder and 523 healthy controls were drawn from an age-stratified, random, community-based sample of women (20–93 years) participating in the Geelong Osteoporosis Study. Bipolar disorder was diagnosed utilising a semi-structured clinical interview. Anthropometric measurements (weight, height, waist and hip circumference) were taken and fat mass was determined from whole body DXA scans (Lunar DPX-L).ResultsThose with bipolar disorder tended to have greater adiposity. Age-adjusted mean (95% CI) values for bipolar versus controls according to adiposity indices were weight 75.6 (68.9–82.3) versus 72.6 (71.3–74.0) kg, waist circumference 89.8 (84.1–95.6) versus 87.3 (86.1–88.5) cm, waist:hip ratio 0.85 (0.82–0.87) versus 0.84 (0.83–0.84), body mass index 27.6 (25.1–30.1) versus 27.5 (27.0–28.0) kg/m2, fat mass 31.4 (26.5–36.3) versus 28.6 (27.5–29.5) kg and %body fat 40.4 (36.9–43.9) versus 38.0 (37.3–38.7)%; allp> 0.05. Further adjustment for height, smoking, alcohol, psychotropic medication, energy intake or physical activity did not influence these patterns.ConclusionAlthough a pattern suggestive of greater adiposity among those with bipolar disorder was observed, no significant differences were detected. We cannot exclude the possibility of a type II error. Further research with a larger sample may produce more conclusive results.


Sign in / Sign up

Export Citation Format

Share Document