scholarly journals Effect of Different Color Paste on Properties of Fluorine Resin/Aluminum Infrared Low Emissivity Coating

Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 70 ◽  
Author(s):  
Xiaoxing Yan

The effect of the four kinds of red, dark yellow, purple, and black pastes on the properties of fluorine resin/aluminum low emissivity coating was studied. The infrared emissivity coatings with red and black pastes were higher than the coatings with dark yellow and purple pastes. The hardness of the coatings with red, dark yellow, and purple color pastes was 6H, and that with black pastes was 6B. The adhesion and impact resistance of dark yellow coating was better, followed by red and purple, and the adhesion and impact resistance of black coating was the worst. Electrochemical polarization curves indicated that fluorine resin coatings with purple paste had better corrosion resistance. After the salt water resistance test, there was no obvious loss of light in the coatings with the four kinds of color pastes. The purple paste coating had no obvious loss of light and less bubble, suggesting that the fluorine resin/aluminum low emissivity coating with purple paste had better performance. The results of this study provide a new prospect for the application of infrared low emissivity coating in infrared stealth and compatibility with visible light.

Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 35 ◽  
Author(s):  
Xiaoxing Yan ◽  
Lin Wang ◽  
Xingyu Qian

An aluminum/waterborne acrylic coating was developed by orthogonal experiments, and the gloss, emissivity, chromatic distortion, hardness, adhesion, impact resistance, and corrosion resistance of the coatings were examined. The results showed that the effect of drying time on the infrared emissivity of coatings was more significant than that of the Al powder concentration and nano-silica slurry. When the drying time was prolonged from 0.5 to 6.0 min, the gloss of the coating decreased slowly and the gloss remained low. The infrared emissivity first decreased and then increased. The infrared emissivity of coatings dried for 2.0 min was better. The L’ value gradually decreased and showed a small change of range. With the increasing of the drying time, the hardness of the coating gradually decreased and was the highest at 0.5–2.0 min. The drying time had no effect on the adhesion level. The impact resistance of the coating was better during the drying period of 1.0–3.0 min. The corrosion resistance of the coating was better at 2.0 min. When the drying time was 2.0 min, the waterborne coating showed the better comprehensive performance. This study provides new prospects in using low infrared emissive coatings for infrared stealth and compatibility with visible light.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 597 ◽  
Author(s):  
Yan

A fluorine resin/aluminum infrared coating was prepared with aluminum using black paste as filler and fluorine resin as binder. The effect of the black paste content on the performance of gloss, color difference, infrared emissivity, hardness, adhesion, impact resistance, roughness, optical testing, and corrosion resistance of the fluorine resin/aluminum infrared coating were examined. When the content of black paste was increased from 1.0% to 9.0%, the gloss of the coating surface decreased; the ΔE* value of the coating decreased; the infrared emissivity of the coating surface increased gradually; the hardness of the coating was 6H; the adhesion grade of the coating was 0; the infrared absorption peak increased gradually. When the content of black paste was 0%–3.0%, the impact resistance was more than 50 kg∙cm, and the impact resistance was higher. When the content of black paste was 0%–5.0%, the surface roughness of the coating was relatively low. When the content of black paste was 1.0%, the corrosion resistance of the coating was the best. The results showed that when the content of black paste was 1.0%, the performance of the whole fluorine resin coating was the best. Through the preparation and characterization of fluorine resin infrared low-emissivity coatings, the possibility of applying fluorine resin to infrared low-emissivity anticorrosive coatings was discussed, which laid a foundation for the subsequent engineering application of coatings.


Alloy Digest ◽  
1959 ◽  
Vol 8 (9) ◽  

Abstract Revere No. 508 is a highly ductile, malleable and corrosion resistant copper-nickel alloy suitable for condenser and heat exchanger tubes and many engineering applications such as salt water piping aboard ship, many components of salt water and fresh water stills, feed water heater tubes and marine coolers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-81. Producer or source: Revere Copper and Brass Inc..


Alloy Digest ◽  
1953 ◽  
Vol 2 (12) ◽  

Abstract ALUMINUM 62S is a magnesium silicide type of wrought aluminum alloy with high resistance to fresh and salt water corrosion. It responds to age hardening heat treatment for high mechanical properties. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-11. Producer or source: Aluminum Company of America.


Alloy Digest ◽  
1979 ◽  
Vol 28 (9) ◽  

Abstract AMPCOLOY 525 is a cast copper-nickel alloy to which norminally 1.5% iron has been added to increase its resistance to corrosion by salt water. It is recommended where superior corrosion resistance. weldability and mechanical properties are required. Among its many uses are parts that must be resistant to seawater, steam fittings and chemical processing equipment This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-380. Producer or source: Ampco Metal Inc..


Alloy Digest ◽  
1985 ◽  
Vol 34 (9) ◽  

Abstract Copper Alloy No. C70400 is a 5.5% nickel-copper alloy characterized by resistance to corrosion by high-velocity seawater, resistance to stress-corrosion cracking, and retention of strength at moderately elevated temperatures. It responds well to both hot and cold-working operations. Among its many uses are springs, switches, heat exchangers, salt-water piping and relays. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-500. Producer or source: Copper and copper alloy mills.


2021 ◽  
Vol 877 ◽  
pp. 9-14
Author(s):  
Francis Darwin T. Eugenio ◽  
Bryan B. Pajarito

Iron oxides and similar inorganic compounds have served as anti-corrosion fillers for metal coatings. Environmental issues related to the mining of metallic fillers have stimulated interest in alternative fillers such as organic fillers. This paper explores the use of comminuted waste plastic sachets (WPS) as an anti-corrosion filler to resin-based metal coating. Mixture design of experiment was used to study the effect of iron oxide-WPS blends on the film thickness, viscosity, corrosion behavior, and water resistance of the coating. Results show that the film thickness was affected by the presence of iron oxide while the viscosity of the coating was affected by high loads of WPS. Among all coatings, the blend containing 25% iron oxide and 75% WPS produced the highest corrosion resistance. In conclusion, comminuted WPS provided additional corrosion resistance and could serve as an alternative anti-corrosion filler.


Sign in / Sign up

Export Citation Format

Share Document