scholarly journals Effect of Emulsifier on the Structure and Properties of Waterborne Silicone Antifouling Coating

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 168 ◽  
Author(s):  
Sikui Liu ◽  
Zhanping Zhang ◽  
Yuhong Qi

Three-component waterborne silicone antifouling coatings, which could cured at room temperature, were prepared, respectively, with cationic (stearyl trimethyl ammonium bromide) or anionic (sodium dodecyl benzene sulfonate) silicone emulsion as a film-forming substance, γ-methacryloxypropyltrimethoxysilane as a curing agent and dibutyltin dilaurate as a catalyst. The effect of emulsifier on the structure and properties of silicone coating was studied. The results showed that the coating with cationic silicone emulsion had high crosslinking density, and its surface is smooth. The surface of the coating prepared by the anionic silicone emulsion is rough. Emulsifier type had no obvious effect on the surface free energy of the waterborne silicone coating. The coatings have the characteristics of low surface energy and excellent bacterial desorption properties. Stearyl trimethyl ammonium bromide in the cured coating can reduce the adhesion of marine bacteria on the coating surface. Both the emulsifiers can inhibit the activity of Navicula Tenera. The waterborne silicone coating prepared by cationic silicone emulsion has better comprehensive mechanical properties and antifouling performance.

2013 ◽  
Vol 734-737 ◽  
pp. 2505-2508
Author(s):  
Lin Lin Cui ◽  
Hua Nan Guan

Dodecyl trimethyl ammonium bromide/sodium dodecyl benzene sulfonate (DTAB/SDBS) complex formulation of scale effect on the spontaneous formation of vesicles and the influence of different factors on the stability of vesicles were discussed, structure and morphology of vesicles were observed.


2011 ◽  
Vol 361-363 ◽  
pp. 1946-1949
Author(s):  
Yi Fei Li ◽  
Tian Wei Qian ◽  
Li Juan Huo

In this paper,the effect of surfactant to the infiltration and the change of saturated hydraulic conductivity was studied by GUELPH PERMEAMETER. We investigated effects on soil infiltration by three representative surfactants.The results show that the existing of sodium dodecyl benzene sulfonate (SDBS), cetyl trimethyl ammonium bromide bromide (CTAB) and polyxyethylene fatty alcohol (AEO9) would decrease soil saturated hydraulic conductivity.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Li Cui ◽  
Ming Hao ◽  
Fei Wang ◽  
Baizeng Fang ◽  
Jinsheng Liang ◽  
...  

The unique structure of two-dimensional molybdenum disulfide (MoS2) with rich active sites makes it a promising catalyst, whereas it also brings structural instability. Surfactant-assisted synthesis of MoS2 can be regarded as a simple way to regulate the microstructure. In this work, the surfactant additives were adopted to optimize the microstructure of MoS2/sepiolite nanocomposite, and the effects of surfactants type and concentration were investigated. For the sample prepared with 1 mol/L sodium dodecyl benzene sulfonate (SDBS), it exhibits the highest intensity for the peak of MoS2 at 14.2°, highly dispersed MoS2 nanosheet on the sepiolite, the lowest absorption intensity of Rhodamine B (RhB) at 553 nm of the wavelength, and the highest photocatalytic activity which is 2.5 times and 4.2 times higher than those prepared with 1 mol/L hexadecyl trimethyl ammonium bromide (CTAB) and 1 mol/L polyvinyl pyrrolidone (PVP) after a 150-minute irradiation, respectively. The above results suggest SDBS is the optimal surfactant to optimize the microstructure of MoS2/sepiolite nanocomposite. This work could provide new insights into the fabrication of high-quality MoS2-based nanocomposite.


2020 ◽  
Vol 20 (7) ◽  
pp. 4015-4022
Author(s):  
Baomin Wang ◽  
Shuang Deng ◽  
Lu Zhao

Graphene nanoplates (GNPs) are carbon nanomaterials with two-dimensional structure which is easy to reunite and their dispersion is necessary before using. The existing methods for dispersion characterization mainly include UV spectrophotometry, scanning electron microscope (SEM), transmission electron microscopy (TEM) and Atomic Force Microscopy (AFM). In this research study, sodium dodecyl benzene sulfonate (SDBS), polyoxyethylene (40) nonylphenyl ether, branched (CO890), polyvinyl pyrrolidone (PVP) and cetyltrimethyl ammonium bromide (CTAB) were used as dispersants, and ultrasonic treatment was employed as dispersion method. Ultraviolet spectrum for GNPs showed that some errors were attained, resulting from dispersant at 274 nm characteristic wavelength of GNPs dispersions with deionized water as controlled sample. The errors could be eliminated if dispersant solution was used as controlled sample. The microstructures of dispersed GNPs observed by SEM, TEM and AFM suggested that the GNPs were dispersed uniformly with 2.5 g/L SDBS, which showed the best dispersion effect. Raman spectrum indicated that more chaotic distribution and edge structures were achieved after dispersion.


2016 ◽  
Vol 75 (6) ◽  
pp. 1342-1350 ◽  
Author(s):  
Yingling Wang ◽  
Tianjun Ni ◽  
Jianmei Yuan ◽  
Chunfeng Wang ◽  
Guoguang Liu

The potential reaction of diclofenac (DCF) with ferrate(VI) and influences of coexisting surfactants have not been investigated in depth, and are the focus of this study. The results demonstrated that DCF reacted effectively and rapidly with Fe(VI) and approximately 75% of DCF (0.03 mM) was removed by excess Fe(VI) (0.45 mM) within 10 min. All of the reactions followed pseudo first-order kinetics with respect to DCF and Fe(VI), where the apparent second-order rate constant (kapp) was 5.07 M−1 s−1 at pH 9.0. Furthermore, the degradation efficiencies of DCF were clearly dependent on the concentrations of dissolved organic matter additives in the substrate solution. Primarily, inhibitory effects were observed with the samples that contained anionic (sodium dodecyl-benzene sulfonate, SDBS) or non-ionic (Tween-80) surfactants, which have been attributed to the side reactions between Fe(VI) and surfactants, which led to a reduction in the available oxidant for DCF destruction. Furthermore, the addition of a cationic surfactant (cetyltrimethyl ammonium bromide, CTAB) and humic acid (HA) conveyed significantly promotional effects on the DCF-Fe(VI) reaction. The rate enhancement effect for CTAB might be due to micellar surface catalysis, through the Coulomb attraction between the reactants and positively charged surfactants, while the catalytic action for HA resulted from the additional oxidation of Fe(V)/Fe(IV) in the presence of HA. The results provided the basic knowledge required to understand the environmental relevance of DCF oxidation via Fe(VI) in the presence of surfactant additives.


2018 ◽  
Vol 8 ◽  
pp. 184798041878197 ◽  
Author(s):  
Wenzheng Wu ◽  
Longjian Zhang ◽  
Xiaojie Zhai ◽  
Ce Liang ◽  
Kaifeng Yu

Combining the advantages of the sol–gel method and solvothermal method, the single anatase phase of nano-titanium dioxide (TiO2) with high crystallinity had been prepared by means of the sol–solvent thermal improved process, in which butyl titanate was used as titanium source; anhydrous ethanol as solvent; concentrated nitric acid as inhibitor; and cationic surfactant cetyl trimethyl ammonium bromide (CTAB), anionic surfactant sodium dodecyl benzene sulfonate (SDBS), and nonionic surfactant polyethylene glycol (PEG) as dispersants. The analysis results of Brunauer–Emmett–Teller, scanning electron microscopy, and transmission electron microscopy characterizations indicated that CTAB-modified TiO2 with the optimum ratio had the most apparent dispersibility and the highest specific surface area compared with unmodified TiO2, SDBS-modified TiO2, and PEG-modified TiO2. At the same time, the photocatalytic degradation rate of methyl orange could be improved to 99.16%. It indicated that the modification effect of CTAB was significantly better than those of SDBS and PEG, which made the nanoparticles uniformly dispersed, resulting in higher photocatalytic activity.


2012 ◽  
Vol 501 ◽  
pp. 407-412
Author(s):  
Dong Xing Du ◽  
Dian Cai Geng ◽  
Shi Jiao Sun ◽  
Ying Ge Li

Surface tension is one of the main physical parameters of foams. The surface tension of Sodium Dodecyl Benzene Sulfonate (SDBS)solution and Triton solution are measured by the drop volume method,and at the same time CO2 saturated SDBS solution is also measured in this paper. It is found the solution concentration has an obvious effect on the surface tension. For SDBS solution, the surface tension gradually decreases with the increase of surfactant concentration while keeps constant after a certain concentration. For Triton solution, on the other hand, the surface tension always remains approximately constant in the studied concentration region. The surface tension of CO2 saturated SDBS solution is slightly higher than SDBS solution through experimental investigations.


2014 ◽  
Vol 953-954 ◽  
pp. 1230-1233 ◽  
Author(s):  
Lin Lin Cui ◽  
Li Juan Fu

Cetyl trimethyl ammonium bromide/sodium dodecyl benzene sulfonate (CTAB/SDBS) complex formulation of scale effect on the spontaneous formation of vesicles and the influence of different factors on the stability of vesicles were discussed, structure and morphology of vesicles were observed.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Fang Wang ◽  
Qiang Zeng ◽  
Wenting Su ◽  
Min Zhang ◽  
Lei Hou ◽  
...  

Bisphenol A (BPA) is a typical endocrine-disrupting chemical. The removal of BPA has raised much concerns in recent years. This paper examined the adsorption behavior of BPA to biochars and the different effects of cationic, anionic, and nonionic surfactants. The results indicated that peanut shell biochars prepared at 300°C (BC300), 500°C (BC500), and 700°C (BC700) showed strong adsorption affinity for BPA, and the adsorption affinity of biochars increased with the increase of pyrolysis temperature. The range of log Kd values was 2.83∼3.71, 2.91∼4.57, and 3.24∼5.50 for BC300, BC500, and BC700, respectively. Both the type of surfactants and the properties of biochars could affect the adsorption behavior of BPA. Cetyltrimethyl ammonium bromide (CTAB) showed negligible effect on the adsorption of BPA on BC300, and the inhibition effect of CTAB was stronger with the increase of biochar pyrolysis temperature. Tween 20 and sodium dodecyl benzene sulfonate (SDBS) showed stronger inhibition effect than CTAB, especially on BC300. This is likely because the inhibition effect caused by competition of CTAB may be counterbalanced by the enhancement caused by the partitioning effect by adsorbed CTAB and the bridge effect between the –NH4+ group of CTAB and the phenol group on BPA/O-functional groups of biochars, whereas Tween 20 and SDBS do not have this bridge effect advantage. This study could provide insightful information for the application of biochars in removal of BPA.


2011 ◽  
Vol 383-390 ◽  
pp. 6174-6180 ◽  
Author(s):  
Wei Dong Wu ◽  
Si Mei Liu ◽  
Huan Xi Hong ◽  
Sheng Xiang Chen

Several water-based nanofluids were prepared under the action of surfactant by using ultrasonic dispersion method. The absorbency and viscosity of the nanofluids prepared under different conditions were measured and analyzed. The results showed that, when the mass fractions of nanoparticles were 0.2%, the most appropriate surfactants for Al2O3, FeO, γ-Fe2O3water-based nanofluids were SDBS (Sodium Dodecyl Benzene Sulfonate), ACT (ammonium citrate), CTAB (Cetyltrimethyl Ammonium Bromide), respectively and the optimum mass fractions of the surfactants corresponding to the three nanofluids were 0.2%, 0.1%, 0.2%, respectively, to obtain the best dispersion stability. The optimum ultrasonic condition was 60 min of ultrasonic time under 300 W of ultrasonic power or 90 min of ultrasonic time under 200 W of ultrasonic power, in which the water-based nanofluids had the largest absorbency, the smallest viscosity and the strongest stability. In addition, the greater the size of the nanoparticles the easilier the reunion, and the poorer the dispersion stability was. When the pH value was about 4, the absorbency of Al2O3 nanofluid was larger and the dispersion stability was better. The inherent mechanism of keeping stability of nanofluids was discussed.


Sign in / Sign up

Export Citation Format

Share Document